Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J A Hadron Nucl ; 57(4): 128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867816

RESUMO

The observed baryon asymmetry in the universe cannot be reconciled with the current form of the Standard Model (SM) of particle physics. The Standard Model breaks charge conjugation parity (CP) symmetry, but not in a sufficient amount to explain the observed matter-antimatter asymmetry. Historically one of the first systems to be studied in the search of symmetry breaking within the Standard Model is the electric dipole moment (EDM) of the neutron. The contribution to the neutron EDM coming from the SM is several order of magnitudes smaller than the current experimental bound, thus providing a unique, background-free window for potential discovery of physics Beyond the Standard Model (BSM). The strong CP-violating θ term can also contribute to the neutron EDM, as can all the CP-violating effective operators describing, at energies below the electro-weak scale, the contributions from BSM. To constrain all these contributions to the neutron EDM we need to precisely determine the hadronic matrix elements of the corresponding renormalized operators. After a brief introduction on baryon asymmetry and baryogenesis, I summarize the current stuatus for experiments in search of a neutron EDM. I then describe in more details the different CP-violating sources, and some results in Chiral Perturbation Theory precede a discussion on the current status of Lattice QCD calculations. I will in particular focus on the 2 main challenges for these type of calculations: the signal-to-noise ratio and the renormalization. I will discuss several improvement techniques trying to improve these two aspects of the calculation and I will conclude with an optimistic view into the future.

2.
Phys Rev Lett ; 117(7): 072002, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563954

RESUMO

Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA