Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417497

RESUMO

Dermal exposure to phosphorus flame retardants (PFRs) has received much attention as a major alternative exposure route in recent years. However, the information regarding dermal exposure via direct contact with a product is limited. In addition, in the commonly used dermal permeability test, the target substance is dissolved in a solvent, which is unrealistic. In this study, a dermal permeability test of PFRs in three car seats was performed using artificial skin. The PFR concentrations in the car seats are 0.12 wt% tris(2-chloroethyl) phosphate (TCEP), 0.030-0.25 wt% tris(2-chloroisopropyl) phosphate (TCPP), 0.15 wt% triphenyl phosphate (TPhP), 0.89 wt% cresyl diphenyl phosphate (CsDPhP), 0.074 wt% tricresyl phosphate (TCsP), and 0.46-4.7 wt% diethylene glycol bis [di (2-chloroisopropyl) phosphate (DEG-BDCIPP). The mean skin permeation rates for a contact time of 24 h are 14 (TCEP), 5.4-160 (TCPP), 0.67 (CsDPhP), 0.38 (TPhP), and 3.3-58 ng cm-2 h-1 (DEG-BDCIPP). The concentrations of TCsP in receptor liquid were lower than the limit of quantification at the contact time of 24 h. The skin permeation rates were significantly affected by the type of car seat (e.g., fabric or non-fabric). The potential dermal TCPP exposure rate for an adult via direct contact with the car seat during the average daily contact time (1.3 h), which was the highest value assessed in this study, was estimated to be 16,000 ng kg-1 day-1, which is higher than that related to inhalation and dust ingestion reported as significant exposure route of PFRs in previous studies. These facts reveal that dermal exposure associated with direct contact with the product might be an important exposure pathway for PFRs.


Assuntos
Sistemas de Proteção para Crianças , Retardadores de Chama , Fosfinas , Pele Artificial , Tritolil Fosfatos , Humanos , Adulto , Fósforo , Retardadores de Chama/análise , Organofosfatos/análise , Fosfatos , Poeira , Exposição Ambiental
2.
PLoS One ; 14(2): e0205939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30789939

RESUMO

Motilin is a gastrointestinal peptide hormone that stimulates gastrointestinal motility. Motilin is produced primarily in the duodenum and jejunum. Motilin receptors (MTLRs) are G protein-coupled receptors that may represent a clinically useful pharmacological target as they can be activated by erythromycin. The functions of motilin are highly species-dependent and remain poorly understood. As a functional motilin system is absent in rodents such as rats and mice, these species are not commonly used for basic studies. In this study, we examine the usefulness of human MTLR-overexpressing transgenic (hMTLR-Tg) mice by identifying the mechanisms of the gastric motor response to human motilin and erythromycin. The distribution of hMTLR was examined immunohistochemically in male wild-type (WT) and hMTLR-Tg mice. The contractile response of gastric strips was measured isometrically in an organ bath, while gastric emptying was determined using phenol red. hMTLR expression was abundant in the gastric smooth muscle layer. Interestingly, higher levels of hMTLR expression were observed in the myenteric plexus of hMTLR-Tg mice but not WT mice. hMTLR was not co-localized with vesicular acetylcholine transporter, a marker of cholinergic neurons in the myenteric plexus. Treatment with human motilin and erythromycin caused concentration-dependent contraction of gastric strips obtained from hMTLR-Tg mice but not from WT mice. The contractile response to human motilin and erythromycin in hMTLR-Tg mice was affected by neither atropine nor tetrodotoxin and was totally absent in Ca2+-free conditions. Furthermore, intraperitoneal injection of erythromycin significantly promoted gastric emptying in hMTLR-Tg mice but not in WT mice. Human motilin and erythromycin stimulate gastric smooth muscle contraction in hMTLR-Tg mice. This action is mediated by direct contraction of smooth muscle via the influx of extracellular Ca2+. Thus, hMTLR-Tg mice may be useful for the evaluation of MTLR agonists as gastric prokinetic agents.


Assuntos
Eritromicina/metabolismo , Motilidade Gastrointestinal/fisiologia , Motilina/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/fisiologia , Músculo Liso/citologia , Músculo Liso/metabolismo , Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Neuropeptídeos/genética , Estômago/citologia , Estômago/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA