Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Heart Vessels ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797744

RESUMO

It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.

2.
Ann Plast Surg ; 90(2): 171-179, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688861

RESUMO

ABSTRACT: Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-ß1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.


Assuntos
Plasma Rico em Plaquetas , Fator A de Crescimento do Endotélio Vascular , Humanos , Ratos , Animais , Meios de Cultivo Condicionados/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Células-Tronco/metabolismo , Plasma Rico em Plaquetas/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas
3.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35368226

RESUMO

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Assuntos
Remodelamento Atrial , Gota , Canal de Potássio Kv1.5/metabolismo , Animais , Caspase 1/metabolismo , Gota/tratamento farmacológico , Gota/metabolismo , Gota/patologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
4.
Clin Exp Nephrol ; 26(6): 522-529, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35212881

RESUMO

BACKGROUND: Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD. Here we studied effects of genetic expression and pharmacological induction of Hsp70 on the UMOD mutants C112Y and C217G. METHODS: We expressed wild type (WT), C112Y and C217G in HEK293 cells and studied their maturation and cellular damage using western blot and flow cytometry. RESULTS: Expression of C112Y or C217G increased pro-apoptotic proteins, decreased anti-apoptotic proteins, and induced cellular apoptosis as examined by annexin V staining and flow cytometry. Overexpression of Hsp70 or administration of an Hsp70 inducer geranylgeranylacetone (GGA) promoted maturation of the mutant proteins, increased their secreted forms, normalized the levels of pro- and anti-apoptotic proteins and suppressed apoptosis. CONCLUSION: These findings indicated that Hsp70 enhanced maturation of C112Y and C217G and reduced cellular apoptosis, suggesting that Hsp70 induction might be of a therapeutic value for treatment of FJHN.


Assuntos
Hiperuricemia , Proteínas Reguladoras de Apoptose/genética , Gota , Células HEK293 , Humanos , Hiperuricemia/genética , Nefropatias , Linhagem , Uromodulina/genética
5.
Circ J ; 85(5): 657-666, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33716265

RESUMO

BACKGROUND: Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions.Methods and Results:MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS: ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.


Assuntos
Tecido Adiposo , Insuficiência Cardíaca , Infarto do Miocárdio , Indutores da Angiogênese , Animais , Insuficiência Cardíaca/terapia , Células Endoteliais da Veia Umbilical Humana , Humanos , Infarto do Miocárdio/terapia , Ratos , Transplante de Células-Tronco
6.
Circ J ; 83(11): 2282-2291, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31527337

RESUMO

BACKGROUND: Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI.Methods and Results:ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a ß-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS: ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/cirurgia , Gordura Subcutânea/citologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Ratos Endogâmicos Lew , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Recuperação de Função Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular/efeitos dos fármacos
7.
Circ J ; 83(4): 718-726, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30787218

RESUMO

BACKGROUND: Intracellular uric acid is known to increase the protein level and channel current of atrial Kv1.5; however, mechanisms of the uric acid-induced enhancement of Kv1.5 expression remain unclear. Methods and Results: The effects of uric acid on mRNA and protein levels of Kv1.5, as well as those of Akt, HSF1 and Hsp70, in HL-1 cardiomyocytes were studied by using qRT-PCR and Western blotting. The uptake of uric acid was measured using radio-labeled uric acid. The Kv1.5-mediated channel current was also measured by using patch clamp techniques. Uric acid up-taken by HL-1 cells significantly increased the level of Kv1.5 proteins in a concentration-dependent manner, with this increase abolished by an uric acid transporter inhibitor. Uric acid slowed degradation of Kv1.5 proteins without altering its mRNA level. Uric acid enhanced phosphorylation of Akt and HSF1, and thereby increased both transcription and translation of Hsp70; these effects were abolished by a PI3K inhibitor. Hsp70 knockdown abolished the uric acid-induced increases of Kv1.5 proteins and channel currents. CONCLUSIONS: Intracellular uric acid could stabilize Kv1.5 proteins through phosphorylation of Akt and HSF1 leading to enhanced expression of Hsp70.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Canal de Potássio Kv1.5/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Úrico/farmacologia , Animais , Linhagem Celular , Canal de Potássio Kv1.5/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , Transcrição Gênica
8.
J Mol Cell Cardiol ; 115: 158-169, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29355491

RESUMO

The human ether-a-go-go-related gene (hERG) encodes the α subunit of a rapidly activating delayed-rectifier potassium (IKr) channel. Mutations of the hERG cause long QT syndrome type 2 (LQT2). Acetylation of lysine residues occurs in a subset of non-histone proteins and this modification is controlled by both histone acetyltransferases and deacetylases (HDACs). The aim of this study was to clarify effects of HDAC(s) on wild-type (WT) and mutant hERG proteins. WThERG and two trafficking-defective mutants (G601S and R752W) were transiently expressed in HEK293 cells, which were treated with a pan-HDAC inhibitor Trichostatin A (TSA) or an isoform-selective HDAC6 inhibitor Tubastatin A (TBA). Both TSA and TBA increased protein levels of WThERG and induced expression of mature forms of the two mutants. Immunoprecipitation showed an interaction between HDAC6 and immature forms of hERG. Coexpression of HDAC6 decreased acetylation and, reciprocally, increased ubiquitination of hERG, resulting in its decreased expression. siRNA against HDAC6, as well as TBA, exerted opposite effects. Immunochemistry revealed that HDAC6 knockdown increased expression of the WThERG and two mutants both in the endoplasmic reticulum and on the cell surface. Electrophysiology showed that HDAC6 knockdown or TBA treatment increased the hERG channel current corresponding to the rapidly activating delayed-rectifier potassium current (IKr) in HEK293 cells stably expressing the WT or mutants. Three lysine residues (K116, K495 and K757) of hERG were predicted to be acetylated. Substitution of these lysine residues with arginine eliminated HDAC6 effects. In HL-1 mouse cardiomyocytes, TBA enhanced endogenous ERG expression, increased IKr, and shortened action potential duration. These results indicate that hERG is a substrate of HDAC6. HDAC6 inhibition induced acetylation of hERG which counteracted ubiquitination leading its stabilization. HDAC6 inhibition may be a novel therapeutic option for LQT2.


Assuntos
Canal de Potássio ERG1/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas Mutantes/metabolismo , Acetilação/efeitos dos fármacos , Animais , Canal de Potássio ERG1/química , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lisina/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
9.
Biochem Biophys Res Commun ; 495(1): 1278-1284, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175323

RESUMO

Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5eGFP/w and MLC2vmCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5eGFP/w and MLC2vmCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Miosinas Cardíacas/metabolismo , Rastreamento de Células/métodos , Ventrículos do Coração/citologia , Proteína Homeobox Nkx-2.5/metabolismo , Miócitos Cardíacos/citologia , Cadeias Leves de Miosina/metabolismo , Células-Tronco Pluripotentes/citologia , Miosinas Cardíacas/genética , Diferenciação Celular/fisiologia , Separação Celular/métodos , Células Cultivadas , Técnicas de Introdução de Genes , Genes Reporter/genética , Ventrículos do Coração/metabolismo , Proteína Homeobox Nkx-2.5/genética , Humanos , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Células-Tronco Pluripotentes/metabolismo , Engenharia Tecidual/métodos
10.
Circ J ; 82(4): 1101-1111, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29491325

RESUMO

BACKGROUND: Ischemia/reperfusion (I/R) injury triggers cardiac dysfunctions via creating reactive oxygen species (ROS). Because xanthine oxidase (XO) is one of the major enzymes that generate ROS, inhibition of XO is expected to suppress ROS-induced I/R injury. However, it remains unclear whether XO inhibition really yields cardioprotection during I/R. The protective effects of the XO inhibitors, topiroxostat and allopurinol, on cardiac I/R injury were evaluated.Methods and Results:Using isolated rat hearts, ventricular functions, occurrence of arrhythmias, XO activities and thiobarbituric acid reactive substances (TBARS) productions and myocardial levels of adenine nucleotides before and after I/R, and cardiomyocyte death markers during reperfusion, were evaluated. Topiroxostat prevented left ventricular dysfunctions and facilitated recovery from arrhythmias during I/R. Allopurinol and the antioxidant, N-acetylcysteine (NAC), exhibited similar effects at higher concentrations. Topiroxostat inhibited myocardial XO activities and TBARS productions after I/R. I/R decreased myocardial levels of ATP, ADP and AMP, but increased that of xanthine. While topiroxostat, allopurinol or NAC did not change myocardial levels of ATP, ADP or AMP after I/R, all of the agents decreased the level of xanthine. They also decreased releases of CPK and LDH during reperfusion. CONCLUSIONS: Topiroxostat showed protective effects against I/R injury with higher potency than allopurinol or NAC. It dramatically inhibited XO activity and TBARS production, suggesting suppression of ROS generation.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Arritmias Cardíacas/tratamento farmacológico , Nitrilas/farmacologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Piridinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Xantina Desidrogenase/antagonistas & inibidores
12.
Circ J ; 80(12): 2443-2452, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27803431

RESUMO

BACKGROUND: Long QT syndrome 2 (LQT2) is caused by mutations in the human ether-a-go-go-related gene (hERG). Most of its mutations give rise to unstable hERG proteins degraded by the proteasome. Recently, carbachol was reported to stabilize the wild-type hERG-FLAG via activation of the muscarinic type 3 receptor (M3-mAChR). Its action on mutant hERG-FLAG, however, remains uninvestigated.Methods and Results:A novel mutant hERG-FLAG carried 2 mutations: an amino acid substitution G572S and an in-frame insertion D1037_V1038insGD. When expressed in HEK293 cells, this mutant hERG-FLAG was degraded by the proteasome and failed to be transported to the cell surface. Carbachol restored stability of the mutant hERG-FLAG and facilitated cell-surface expression. Carbachol activated PKC, augmented phosphorylation of heat shock factor 1 (HSF1) and enhanced expression of heat shock proteins (hsps), hsp70 and hsp90. Both a M3-mAChR antagonist, 4-DAMP, and a PKC inhibitor, bisindolylmaleimide, abolished carbachol-induced stabilization of the mutant hERG-FLAG. CONCLUSIONS: M3-mAChR activation leads to enhancement of hsp expression via PKC-dependent phosphorylation of HSF1, thereby stabilizing the mutant hERG-FLAG protein. Thus, M3-mAChR activators may have a therapeutic value for patients with LQT2. (Circ J 2016; 80: 2443-2452).


Assuntos
Proteínas de Ligação a DNA/metabolismo , Canal de Potássio ERG1 , Síndrome do QT Longo , Mutação , Receptor Muscarínico M3/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adolescente , Proteínas de Ligação a DNA/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Fatores de Transcrição de Choque Térmico , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Fosforilação/genética , Estabilidade Proteica , Receptor Muscarínico M3/genética , Fatores de Transcrição/genética , Transfecção
13.
J Mol Cell Cardiol ; 86: 138-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232501

RESUMO

Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.


Assuntos
Fibrilação Atrial/genética , Proteínas de Choque Térmico HSC70/genética , Canal de Potássio Kv1.5/genética , Ubiquitina-Proteína Ligases/genética , Animais , Fibrilação Atrial/patologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/biossíntese , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Canal de Potássio Kv1.5/biossíntese , Canal de Potássio Kv1.5/metabolismo , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
14.
Circ J ; 79(12): 2659-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477273

RESUMO

BACKGROUND: Hyperuricemia induces endothelial dysfunction, oxidative stress and inflammation, increasing cardiovascular morbidities. It also raises the incidence of atrial fibrillation; however, underlying mechanisms are unknown. METHODS AND RESULTS: The effects of urate on expression of Kv1.5 in cultured mouse atrial myocytes (HL-1 cells) using reverse transcriptase-PCR, immunoblots, flow cytometry and patch-clamp experiments were studied. Treatment with urate at 7 mg/dl for 24 h increased the Kv1.5 protein level, enhanced ultra-rapid delayed-rectifier K(+)channel currents and shortened action potential duration in HL-1 cells. HL-1 cells expressed the influx uric acid transporter (UAT), URATv1, and the efflux UATs, ABCG2 and MRP4. An inhibitor against URATv1, benzbromarone, abolished the urate effects, whereas an inhibitor against ABCG2, KO143, augmented them. Flow cytometry showed that urate induced an increase in reactive oxygen species, which was abolished by the antioxidant, N-acetylcysteine (NAC), and the NADPH-oxidase inhibitor, apocynin. Both NAC and apocynin abolished the enhancing effects of urate on Kv1.5 expression. A urate-induced increase in the Kv1.5 proteins was accompanied by phosphorylation of extracellular signal-regulated kinase (ERK), and was abolished by an ERK inhibitor, PD98059. NAC abolished phosphorylation of ERK by urate. CONCLUSIONS: Intracellular urate taken up by UATs enhanced Kv1.5 protein expression and function in HL-1 atrial myocytes, which could be attributable to ERK phosphorylation and oxidative stress derived from nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hiperuricemia/metabolismo , Canal de Potássio Kv1.5/biossíntese , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Ácido Úrico/farmacologia , Animais , Linhagem Celular , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Hiperuricemia/patologia , Canal de Potássio Kv1.5/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
15.
Clin Exp Nephrol ; 19(4): 576-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25239792

RESUMO

BACKGROUND: Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD that encodes uromodulin. Topiroxostat, a novel non-purine analog, selectively inhibits xanthine oxidase and reduces the serum uric acid levels and the urinary albuminuria. METHODS: Genomic DNA of a patient was extracted from peripheral white blood. Exons and flanking sequences of UMOD were amplified by PCR with primers. Mutation analysis was performed by direct sequencing of the PCR products. The wild-type and mutant uromodulin were expressed in HEK293 cells and analyzed by western blotting, immunoprecipitation, immunofluorescence, and flow cytometry. RESULTS: We identified an FJHN patient who carried a novel UMOD mutation G335A (C112Y). The levels of both cytosolic and secreted C112Y protein were significantly decreased compared with the wild-type, whereas the level of ubiquitination was higher in C112Y than that in the wild type. The half-life of C112Y was shortened and it was restored by a proteasome inhibitor MG132. Immunofluorescence revealed decreased levels of C112Y in the Golgi apparatus and on the plasma membrane. Expression of C112Y induced cellular apoptosis as revealed by flow cytometry. Apoptosis induced by C112Y was suppressed by topiroxostat. CONCLUSION: C112Y causes its protein instability resulting cellular apoptosis which could be suppressed with topiroxostat.


Assuntos
Apoptose/efeitos dos fármacos , Gota/genética , Hiperuricemia/genética , Nefropatias/genética , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Uromodulina/genética , Adulto , Gota/tratamento farmacológico , Células HEK293 , Humanos , Hiperuricemia/tratamento farmacológico , Nefropatias/tratamento farmacológico , Masculino , Mutação , Nitrilas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Piridinas/farmacologia
16.
Pacing Clin Electrophysiol ; 37(7): 853-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24499369

RESUMO

BACKGROUND: A KCNE1 polymorphism, D85N, causes long QT syndrome (LQTS) with a decrease in the slowly activating delayed-rectifier K(+) channel current (IKs ). We examined impacts of D85N polymorphism on KCNE1 protein stability and functions, and tested the ability of various drugs to modify them. METHODS: KCNE1-D85N or the wild-type protein was coexpressed in COS7 cells with KCNQ1 to form K(+) channels. Expression, degradation, and intracellular localization of KCNE1 proteins, as well as the currents conferred by KCNQ1/KCNE1 complexes, were determined using immunoblots, immunofluorescence, and patch-clamp techniques. RESULTS: The protein level of KCNE1-D85N was lower than that of the wild-type, in spite of the comparable levels of their mRNA. KCNE1-D85N was highly ubiquitinated and rapidly degraded as compared to the wild-type; a proteasome inhibitor, MG132, inhibited its degradation and increased its steady-state level. Both KCNE1-D85N and the wild-type proteins were co-immunoprecipitated with KCNQ1. Immunofluorescent signals of KCNE1-D85N accumulated in the endoplasmic reticulum and Golgi apparatus, with reduced levels on the cell membrane. Patch-clamp experiments demonstrated that the membrane current corresponding to IKs was much smaller in cells expressing KCNE1-D85N than in those expressing the wild-type. Verapamil (0.5-10 µM) increased the protein level of KCNE1-D85N, decreased its ubiquitination, slowed its degradation, and enhanced KCNQ1/KCNE1-D85N channel currents. Pretreatment with amiodarone abolished these effects of verapamil. CONCLUSION: KCNE1-D85N is less stable than the wild-type protein, and is rapidly degraded through the ubiquitin-proteasome system. Verapamil may be of a therapeutic value in LQTS patients via preventing degradation of KCNE1-D85N.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Polimorfismo Genético , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Verapamil/farmacologia , Verapamil/uso terapêutico , Células Cultivadas , Humanos
17.
Biochem Biophys Res Commun ; 431(2): 225-31, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23313480

RESUMO

P19 embryonal carcinoma (EC) cells are pluripotent stem cells and have numerous morphological and biochemical properties in common with embryonic stem (ES) cells. However, P19 cells differentiate very ineffectively as embryoid bodies (EBs) without the specific chemical inducers whereas ES cells exhibit spontaneous differentiation to the three germ layers. Recently the heterochromatin protein 1 (HP1) family protein HP1γ, which is an epigenetic modulator that binds histone H3 methylated at lysine 9, is shown to be associated with the progression from pluripotent to differentiated status in ES cells. Therefore, to study the role of HP1γ in the differentiation capacity of P19 cells, we have established a HP1γ-overexpressing P19 cell line (HPlγ-P19). Similar to the parental P19 cells, undifferentiated HP1γ-P19 cells continued to express pluripotency marker genes. However, HP1γ-P19 cells exhibited significant morphological differentiation including beating cardiomyocytes, as well as Tuj1-positive neuronal cells and Sox17-positive endodermal cells after EB formation under a normal culture condition. Moreover, real-time RT-qPCR analysis revealed that HP1γ-P19 EB cells expressed various differentiation marker genes. Thus, HP1γ-P19 cells could give rise to all three germ layers in EBs without any drug treatment. Therefore, HP1γ affects the spontaneous differentiation potential of P19 cells, and might play major roles in the decision of cell fates in pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona/biossíntese , Células-Tronco de Carcinoma Embrionário/citologia , Células Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Expressão Gênica , Humanos
18.
Biochem Biophys Res Commun ; 434(1): 131-6, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23542464

RESUMO

Remote reperfusion lung injury following skeletal muscle ischemia and reperfusion accounts for high morbidity and mortality. AMP deaminase (AMPD), a key enzyme for nucleotide cycle, has been implicated in the regulation of this phenomenon. However, the function of Ampd2 and Ampd3 subtype has not been elucidated in remote reperfusion rodent lung injury. We utilized AMPD3 and AMPD2-deficient mice. The two types of AMPD-deficient mice and wild-type (WT) littermates were subjected to ischemia-reperfusion injury. After 3h bilateral hind-limb ischemia and reperfusion, AMPD3 mRNA, AMPD activity and inosine monophosphate (IMP) increased significantly in WT and AMPD2-deficient mice lungs, while they did not show significant alterations in AMPD3-deficient mice lungs. Genetic inactivation of Ampd3 resulted in markedly accelerated myeloperoxidase (MPO) activity along with exaggerated neutrophils infiltration and hemorrhage in the lungs compared to WT and AMPD2-deficient mice, furthermore, IMP treatment significantly attenuated MPO activity and neutrophils infiltration in WT and the two types of AMPD-deficient mice lungs after 3h reperfusion. These findings demonstrate for the first time in AMP-deficient mice models that AMPD3 plays a critical role in remote reperfusion lung injury via generation of IMP and validate the potential to use IMP into the clinical arena to attenuate remote ischemia-reperfusion lung injury.


Assuntos
AMP Desaminase/fisiologia , Lesão Pulmonar/enzimologia , Traumatismo por Reperfusão/enzimologia , AMP Desaminase/deficiência , AMP Desaminase/genética , Animais , Modelos Animais de Doenças , Inosina Monofosfato/administração & dosagem , Inosina Monofosfato/biossíntese , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
19.
Circ Res ; 108(4): 458-68, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21183741

RESUMO

RATIONALE: The human ether-a-go-go-related gene (hERG) encodes the α subunit of the potassium current I(Kr). It is highly expressed in cardiomyocytes and its mutations cause long QT syndrome type 2. Heat shock protein (Hsp)70 is known to promote maturation of hERG. Hsp70 and heat shock cognate (Hsc70) 70 has been suggested to play a similar function. However, Hsc70 has recently been reported to counteract Hsp70. OBJECTIVE: We investigated whether Hsc70 counteracts Hsp70 in the control of wild-type and mutant hERG stability. METHODS AND RESULTS: Coexpression of Hsp70 with hERG in HEK293 cells suppressed hERG ubiquitination and increased the levels of both immature and mature forms of hERG. Immunocytochemistry revealed increased levels of hERG in the endoplasmic reticulum and on the cell surface. Electrophysiological studies showed increased I(Kr). All these effects of Hsp70 were abolished by Hsc70 coexpression. Heat shock treatment of HL-1 mouse cardiomyocytes induced endogenous Hsp70, switched mouse ERG associated with Hsc70 to Hsp70, increased I(Kr), and shortened action potential duration. Channels with disease-causing missense mutations in intracellular domains had a higher binding capacity to Hsc70 than wild-type channels and channels with mutations in the pore region. Knockdown of Hsc70 by small interfering RNA or heat shock prevented degradation of mutant hERG proteins with mutations in intracellular domains. CONCLUSIONS: These results indicate reciprocal control of hERG stability by Hsp70 and Hsc70. Hsc70 is a potential target in the treatment of LQT2 resulting from missense hERG mutations.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto/genética , Potenciais de Ação/fisiologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Retículo Endoplasmático/metabolismo , Canais de Potássio Éter-A-Go-Go/farmacologia , Células HEK293 , Resposta ao Choque Térmico/fisiologia , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/farmacologia
20.
J Arrhythm ; 39(4): 664-668, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560272

RESUMO

Background: Cardiomyocytes derived from human iPS cells (hiPSCs) include cells showing SAN- and non-SAN-type spontaneous APs. Objectives: To examine whether the deep learning technology could identify hiPSC-derived SAN-like cells showing SAN-type-APs by their shape. Methods: We acquired phase-contrast images for hiPSC-derived SHOX2/HCN4 double-positive SAN-like and non-SAN-like cells and made a VGG16-based CNN model to classify an input image as SAN-like or non-SAN-like cell, compared to human discriminability. Results: All parameter values such as accuracy, recall, specificity, and precision obtained from the trained CNN model were higher than those of human classification. Conclusions: Deep learning technology could identify hiPSC-derived SAN-like cells with considerable accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA