Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 298(3): E141-E151, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33170104

RESUMO

Background There is lack of guidance on specific CT protocols for imaging patients with coronavirus disease 2019 (COVID-19) pneumonia. Purpose To assess international variations in CT utilization, protocols, and radiation doses in patients with COVID-19 pneumonia. Materials and Methods In this retrospective data collection study, the International Atomic Energy Agency coordinated a survey between May and July 2020 regarding CT utilization, protocols, and radiation doses from 62 health care sites in 34 countries across five continents for CT examinations performed in patients with COVID-19 pneumonia. The questionnaire obtained information on local prevalence, method of diagnosis, most frequent imaging, indications for CT, and specific policies on use of CT in COVID-19 pneumonia. Collected data included general information (patient age, weight, clinical indication), CT equipment (CT make and model, year of installation, number of detector rows), scan protocols (body region, scan phases, tube current and potential), and radiation dose descriptors (CT dose index and dose length product). Descriptive statistics and generalized estimating equations were performed. Results Data from 782 patients (median age, 59 years [interquartile range, 15 years]) from 54 health care sites in 28 countries were evaluated. Less than one-half of the health care sites used CT for initial diagnosis of COVID-19 pneumonia and three-fourths used CT for assessing disease severity. CT dose index varied based on CT vendors (7-11 mGy; P < .001), number of detector rows (8-9 mGy; P < .001), year of CT installation (7-10 mGy; P = .006), and reconstruction techniques (7-10 mGy; P = .03). Multiphase chest CT examinations performed at 20% of sites (11 of 54) were associated with higher dose length product compared with single-phase chest CT examinations performed in 80% of sites (43 of 54) (P = .008). Conclusion CT use, scan protocols, and radiation doses in patients with coronavirus disease 2019 pneumonia showed wide variation across health care sites within the same and between different countries. Many patients were imaged multiple times and/or with multiphase CT scan protocols. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee in this issue.


Assuntos
COVID-19/diagnóstico por imagem , Protocolos Clínicos , Internacionalidade , Pulmão/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2
2.
Int J Biomed Imaging ; 2023: 6304219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025965

RESUMO

Background: The 3D T1W turbo field echo sequence is a standard imaging method for acquiring high-contrast images of the brain. However, the contrast-to-noise ratio (CNR) can be affected by the turbo factor, which could affect the delineation and segmentation of various structures in the brain and may consequently lead to misdiagnosis. This study is aimed at evaluating the effect of the turbo factor on image quality and volumetric measurement reproducibility in brain magnetic resonance imaging (MRI). Methods: Brain images of five healthy volunteers with no history of neurological diseases were acquired on a 1.5 T MRI scanner with varying turbo factors of 50, 100, 150, 200, and 225. The images were processed and analyzed with FreeSurfer. The influence of the TFE factor on image quality and reproducibility of brain volume measurements was investigated. Image quality metrics assessed included the signal-to-noise ratio (SNR) of white matter (WM), CNR between gray matter/white matter (GM/WM) and gray matter/cerebrospinal fluid (GM/CSF), and Euler number (EN). Moreover, structural brain volume measurements of WM, GM, and CSF were conducted. Results: Turbo factor 200 produced the best SNR (median = 17.01) and GM/WM CNR (median = 2.29), but turbo factor 100 offered the most reproducible SNR (IQR = 2.72) and GM/WM CNR (IQR = 0.14). Turbo factor 50 had the worst and the least reproducible SNR, whereas turbo factor 225 had the worst and the least reproducible GM/WM CNR. Turbo factor 200 again had the best GM/CSF CNR but offered the least reproducible GM/CSF CNR. Turbo factor 225 had the best performance on EN (-21), while turbo factor 200 was next to the most reproducible turbo factor on EN (11). The results showed that turbo factor 200 had the least data acquisition time, in addition to superior performance on SNR, GM/WM CNR, GM/CSF CNR, and good reproducibility characteristics on EN. Both image quality metrics and volumetric measurements did not vary significantly (p > 0.05) with the range of turbo factors used in the study by one-way ANOVA analysis. Conclusion: Since no significant differences were observed in the performance of the turbo factors in terms of image quality and volume of brain structure, turbo factor 200 with a 74% acquisition time reduction was found to be optimal for brain MR imaging at 1.5 T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA