RESUMO
The pharmacokinetics of novel formulations of curcumin mixed with squalene (CSQU) and of curcumin mixed with docosahexaenoic acid (CDHA) was investigated and compared with a standardized unformulated curcumin extract (StdC) and a solid lipid curcumin particle (SLCP) formulation in a randomized, open-label, crossover study. A total of 10 healthy subjects consumed a single dose of each formulation, and blood samples were collected over 8 h. Plasma concentrations of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) were measured. The dose-normalized AUC0-8h of curcumin was significantly higher for SLCP (2.2-fold), CSQU (2.3-fold) and CDHA (2.8-fold) than for StdC. The dose-normalized AUC0-8h of DMC and BDMC did not significantly change, but their Tmax was significantly shortened for SLCP, CSQU, and CDHA. In conclusion, compared with StdC, both fish oil formulations, CSQU and CDHA, significantly improved curcumin absorption as well as SLCP, and CDHA was bioequivalent or superior to SLCP. No sex differences were observed in curcumin absorption.
Assuntos
Curcumina , Humanos , Curcumina/farmacocinética , Óleos de Peixe , Estudos Cross-OverRESUMO
Curcumin has been reported to exert its anti-SARS-CoV-2 activity by inhibiting the binding of spike receptor-binding domain (RBD) to angiotensin-converting enzyme-2 (ACE2). To identify more potent compounds, we evaluated the antiviral activities of curcumin and its analogs in SARS-CoV-2-infected cells. An artificial intelligence-supported activity prediction system was used to select the compounds, and 116 of the 334 curcumin analogs were proposed to have spike RBD-ACE2 binding inhibitory activity. These compounds were narrowed down to eight compounds for confirmatory studies. Six out of the eight compounds showed antiviral activity with EC50 values of less than 30 µM and binding inhibitory activity with IC20 values of less than 30 µM. Structure-activity relationship analyses revealed that the double bonds in the carbon chain connecting the two phenolic groups were essential for both activities. X-ray co-crystallography studies are needed to clarify the true binding pose and design more potent derivatives.