Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 32(6): 2037-50, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323718

RESUMO

γ-Secretase inhibitors (GSIs) reduce amyloid-ß (Aß) peptides but inevitably increase the ß-C-terminal fragment (ß-CTF) of amyloid precursor protein (APP), potentially having undesirable effects on synapses. In contrast, γ-secretase modulators (GSMs) reduce Aß42 without increasing ß-CTF. Although the Aß-lowering effects of these compounds have been extensively studied, little effort has been made to investigate their effects on cognition. Here, we compared the effects of two GSIs--(2S)-2-hydroxy-3-methyl-N-[(2S)-1-{[(1S)-3-methyl-2-oxo-2,3,4,5-tetrahydro-1H-3-benzazepin-1-yl]amino}-1-oxopropan-2-yl]butanamide (LY450139, semagacestat) and (2R)-2-[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxazol-3-yl)phenyl]methyl]amino-5,5,5-trifluoropentanamide (BMS-708163)--and a second-generation GSM [{(2S,4R)-1-[(4R)-1,1,1-trifluoro-7-methyloctan-4-yl]-2-[4-(trifluoromethyl)phenyl]piperidin-4-yl}acetic acid (GSM-2)] on spatial working memory in APP-transgenic (Tg2576) and nontransgenic mice using the Y-maze task. While acute dosing with either GSI ameliorated memory deficits in 5.5-month-old Tg2576 mice, these effects disappeared after 8 d subchronic dosing. Subchronic dosing with either GSI rather impaired normal cognition in 3-month-old Tg2576 mice, with no inhibition on the processing of other γ-secretase substrates, such as Notch, N-cadherin, or EphA4, in the brain. LY450139 also impaired normal cognition in wild-type mice; however, the potency was 10-fold lower than that in Tg2576 mice, indicating an APP-dependent mechanism likely with ß-CTF accumulation. Immunofluorescence studies revealed that the ß-CTF accumulation was localized in the presynaptic terminals of the hippocampal stratum lucidum and dentate hilus, implying an effect on presynaptic function in the mossy fibers. In contrast, both acute and subchronic dosing with GSM-2 significantly ameliorated memory deficits in Tg2576 mice and did not affect normal cognition in wild-type mice. We demonstrated a clear difference between GSI and GSM in effects on functional consequences, providing new insights into strategies for developing these drugs against Alzheimer's disease.


Assuntos
Alanina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/fisiologia , Precursor de Proteína beta-Amiloide/fisiologia , Azepinas/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Inibidores de Proteases/farmacologia , Alanina/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos
2.
J Neurochem ; 125(3): 465-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23240999

RESUMO

Given that amyloid-ß 42 (Aß42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aß42 production should be a potential therapeutic approach. γ-Secretase modulators (GSMs) cause selective reduction of Aß42 or both reduction of Aß42 and Aß40 without affecting total Aß through shifting the γ-cleavage position in amyloid precursor protein. We recently reported on GSM-2, one of the second-generation GSMs, that selectively reduced brain Aß42 level and significantly ameliorated cognitive deficits in plaque-free 5.5-month-old Tg2576 AD model mice. Here, we investigated the effects of GSM-2 on 10-, 14-, and 18-month-old mice which had age-dependent increase in amyloid plaques. Eight-day treatment with GSM-2 significantly ameliorated cognitive deficits measured by Y-maze task in the mice of any age. However, GSM-2 reduced brain soluble Aß42 only in 10-month-old mice. In contrast, GSM-2 markedly reduced newly synthesized soluble Aß42 in both 10- and 18-month-old mice with similar efficacy when measured using the stable isotope-labeling technique, suggesting that nascent Aß42 plays a more significant role than plaque-associated soluble Aß42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aß42 synthesis in AD therapeutic regimens.


Assuntos
Doença de Alzheimer/complicações , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Acetatos/farmacologia , Acetatos/uso terapêutico , Fatores Etários , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/genética , Animais , Anticorpos/uso terapêutico , Cromatografia Líquida , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Ensaio de Imunoadsorção Enzimática , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Espectrometria de Massas , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/imunologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico
3.
Brain Res ; 1191: 168-79, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18164695

RESUMO

We describe in vitro properties and in vivo neuroprotective effects of a newly synthesized, high-affinity, selective allosteric metabotropic glutamate receptor type 1 (mGluR(1)) antagonist, N-cyclohexyl-6-{[(2-methoxyethyl)(methyl)amino]methyl}-N-methylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-202074). YM-202074 bound an allosteric site of rat mGluR(1) with a K(i) value of 4.8+/-0.37 nM. YM-202074 also inhibited the mGluR(1)-mediated inositol phosphates production in rat cerebellar granule cells with an IC(50) value of 8.6+/-0.9 nM, while showing selectivity over mGluR(2-7). When YM-202074 was infused intravenously at an initial dose of 20 mg/kg/h for 0.5 h followed by a dose of 5 mg/kg/h for 7.5 h, the free concentration of YM-202074 in the brain rapidly (<12 min) reached approximately 0.3 microM, reaching a steady-state phase within 1.5 h. We first treated rats such that they developed transient middle cerebral artery (MCA) occlusion. Results clearly demonstrate a dose-dependent improvement of neurological deficit and reduction of the infarct volume in both the hemisphere and cortex when YM-202074 was infused intravenously immediately after occlusion at a dose of 10 or 20 mg/kg/h for 0.5 h followed by a dose of 2.5 or 5 mg/kg/h for 23.5 h, respectively. Significant neuroprotection was maintained even when the administration of drugs was delayed by up to 2 h following the onset of ischemia. Furthermore, the improvement of neurological deficit and the reduction of infarct volume were sustained for 1 week following the onset of ischemia. These results suggest that YM-202074 exhibits great potential as a novel neuroprotective agent for the treatment of stroke.


Assuntos
Benzimidazóis/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Tiazóis/farmacologia , Animais , Benzimidazóis/farmacocinética , Isquemia Encefálica/etiologia , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/complicações , Tiazóis/farmacocinética , Fatores de Tempo , Resultado do Tratamento
4.
Eur J Pharmacol ; 571(1): 8-16, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17597604

RESUMO

Metabotropic glutamate receptor 1 (mGlu(1) receptor) has been suggested to play an important role in pain transmission. In this study, the effects of a newly-synthesized mGlu(1) receptor antagonist, (R)-N-cycloheptyl-6-({[(tetrahydro-2-furyl)methyl]amino}methyl)thieno[2,3-d]pyrimidin-4-ylamine (YM-230888), were examined in a variety of rodent chronic pain models in order to characterize the potential analgesic profile of mGlu(1) receptor blockade. YM-230888 bound an allosteric site of mGlu(1) receptor with a K(i) value of 13+/-2.5 nM and inhibited mGlu(1)-mediated inositol phosphate production in rat cerebellar granule cells with an IC(50) value of 13+/-2.4 nM. It showed selectivity for mGlu(1) versus mGlu(2)-mGlu(7) subtypes and ionotropic glutamate receptors. YM-230888 recovered mechanical allodynia with an ED(50) value of 8.4 mg/kg p.o. in L5/L6 spinal nerve ligation models. It also showed antinociceptive response at doses of 10 and 30 mg/kg p.o. in streptozotocin-induced hyperalgesia models. In addition, it significantly reduced pain parameters at a dose of 30 mg/kg p.o. in complete Freund's adjuvant-induced arthritic pain models. Although YM-230888 showed no significant effect on rotarod performance time at doses of 10 or 30 mg/kg p.o., it significantly decreased it at a dose of 100 mg/kg p.o. On the other hand, YM-230888 showed no significant sedative effect in locomotor activity measurement up to 100 mg/kg p.o. These results suggest that the blockade of mGlu(1) receptors is an attractive target for analgesics. YM-230888 has potential as a new analgesic agent for the treatment of various chronic pain conditions. In addition, YM-230888 may be a useful tool for the investigation of mGlu(1) receptors.


Assuntos
Analgésicos/farmacologia , Cicloeptanos/farmacologia , Dor/prevenção & controle , Pirimidinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Analgésicos/metabolismo , Analgésicos/farmacocinética , Animais , Artrite Experimental/fisiopatologia , Artrite Experimental/prevenção & controle , Benzimidazóis/metabolismo , Ligação Competitiva , Linhagem Celular , Células Cultivadas , Doença Crônica , Cicloeptanos/metabolismo , Cicloeptanos/farmacocinética , Relação Dose-Resposta a Droga , Humanos , Cinética , Ligadura/efeitos adversos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Dor/etiologia , Dor/fisiopatologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ensaio Radioligante , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Nervos Espinhais/cirurgia , Tiazóis/metabolismo , Trítio
5.
Neurosci Lett ; 587: 126-31, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25529196

RESUMO

Oxidative stress is known to play a prominent role in the onset and early stage progression of Alzheimer's disease (AD). For example, protein oxidation and lipid peroxidation levels are increased in patients with mild cognitive impairment. Here, we created a double-transgenic mouse model of AD to explore the pathological and behavioral effects of oxidative stress. Double transgenic (APP/DAL) mice were constructed by crossing Tg2576 (APP) mice, which express a mutant form of human amyloid precursor protein (APP), with DAL mice expressing a dominant-negative mutant of mitochondrial aldehyde dehydrogenase 2 (ALDH2), in which oxidative stress is enhanced. Y-maze and object recognition tests were performed at 3 and 6 months of age to evaluate learning and memory. The accumulation of amyloid plaques, deposition of phosphorylated-tau protein, and number of astrocytes in the brain were assessed histopathologically at 3, 6, 9, and 12-15 months of age. The life span of APP/DAL mice was significantly shorter than that of APP or DAL mice. In addition, they showed accelerated amyloid deposition, tau phosphorylation, and gliosis. Furthermore, these mice showed impaired performance on Y-maze and object recognition tests at 3 months of age. These data suggest that oxidative stress accelerates cognitive dysfunction and pathological insults in the brain. APP/DAL mice could be a useful model for exploring new approaches to AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Amiloide/metabolismo , Transtornos da Memória/psicologia , Estresse Oxidativo , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Gliose , Aprendizagem , Transtornos da Memória/genética , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Fosforilação , Proteínas tau/metabolismo
6.
Brain Res ; 1605: 49-58, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25698614

RESUMO

Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-ß (Aß) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aß deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.


Assuntos
Doença de Alzheimer/terapia , Transplante de Medula Óssea/métodos , Transtornos Cognitivos/prevenção & controle , Leucócitos Mononucleares/transplante , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Células da Medula Óssea , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Placa Amiloide/metabolismo
7.
Neuropharmacology ; 79: 412-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24373902

RESUMO

γ-Secretase is the enzyme responsible for the intramembranous proteolysis of various substrates, such as amyloid precursor protein (APP) and Notch. Amyloid-ß peptide 42 (Aß42) is produced through the sequential proteolytic cleavage of APP by ß- and γ-secretase and causes the synaptic dysfunction associated with memory impairment in Alzheimer's disease. Here, we identified a novel cyclohexylamine-derived γ-secretase modulator, {(1R*,2S*,3R*)-3-[(cyclohexylmethyl)(3,3-dimethylbutyl)amino]-2-[4-(trifluoromethyl)phenyl]cyclohexyl}acetic acid (AS2715348), that may inhibit this pathological response. AS2715348 was seen to reduce both cell-free and cellular production of Aß42 without increasing levels of APP ß-carboxyl terminal fragment or inhibiting Notch signaling. Additionally, the compound increased Aß38 production, suggesting a shift of the cleavage site in APP. The inhibitory potency of AS2715348 on endogenous Aß42 production was similar across human, mouse, and rat cells. Oral administration with AS2715348 at 1 mg/kg and greater significantly reduced brain Aß42 levels in rats, and no Notch-related toxicity was observed after 28-day treatment at 100 mg/kg. Further, AS2715348 significantly ameliorated cognitive deficits in APP-transgenic Tg2576 mice. Finally, AS2715348 significantly reduced brain Aß42 levels in cynomolgus monkeys. These findings collectively show the promise for AS2715348 as a potential disease-modifying drug for Alzheimer's disease.


Assuntos
Acetatos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/efeitos dos fármacos , Cicloexilaminas/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetatos/efeitos adversos , Acetatos/farmacocinética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cognição/efeitos dos fármacos , Cicloexilaminas/efeitos adversos , Cicloexilaminas/farmacocinética , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacocinética , Nootrópicos/efeitos adversos , Nootrópicos/química , Nootrópicos/farmacologia , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Notch/metabolismo
8.
Eur J Pharmacol ; 703(1-3): 53-61, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23276665

RESUMO

Alzheimer's disease is characterized by a progressive decline in cognitive function and involves ß-amyloid (Aß) in its pathogenesis. To characterize cognitive deficits associated with Aß accumulation, we analyzed PS1/APP mice overexpressing mutant presenilin-1 (PS1, M146L; line 6.2) and amyloid precursor protein (APP, K670N/M671L; line Tg2576), a mouse model of Alzheimer's disease with accelerated Aß production. Age-dependent changes in working and spatial memory behaviors were investigated using Y-maze and Morris water maze tasks, respectively, in female PS1/APP mice at ages of 2, 4, 6, and 12 months. Significant deficits in working and spatial memory were observed from 4 and 6 months of age, respectively. Acute single-dose administrations of memantine, a low-to-moderate-affinity N-methyl-d-aspartate (NMDA) antagonist, showed improvements in working memory deficits at 4 months of age, whereas donepezil, an acetylcholinesterase (AChE) inhibitor, did not. However, both drugs improved spatial memory dysfunction at 6 months of age at therapeutically relevant doses. No age-related dramatic changes were observed in expression levels of several proteins relating to memory dysfunction and also the mechanisms of donepezil and memantine in the cerebral cortex of PS1/APP mice until 6 months of age. Taken together, these results suggest dysfunctions in cholinergic and/or glutamatergic transmissions may be involved in the cognitive deficits associated with Aß toxicity. Since donepezil and memantine have been widely used for treating patients of Alzheimer's disease, these results also suggest that cognitive deficits in PS1/APP mice assessed in the Y-maze and Morris water maze tasks are a useful animal model for evaluating novel Alzheimer's disease therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Indanos/uso terapêutico , Memantina/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Nootrópicos/uso terapêutico , Piperidinas/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Inibidores da Colinesterase/sangue , Inibidores da Colinesterase/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Donepezila , Feminino , Indanos/sangue , Indanos/farmacologia , Aprendizagem em Labirinto , Memantina/sangue , Memantina/farmacologia , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Transgênicos , Nootrópicos/sangue , Nootrópicos/farmacologia , Piperidinas/sangue , Piperidinas/farmacologia , Receptores de AMPA/metabolismo
9.
J Neuropathol Exp Neurol ; 70(7): 551-67, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21666502

RESUMO

Repetitive mild or "concussive" traumatic brain injury (TBI) can cause substantial neurologic impairment, but the pathological features of this type of injury are not fully understood. We report an experimental model of TBI in which the closed skulls of anesthetized male C57BL/6J mice are struck with an electromagnetically controlled rubber impactor twice with an interval of 24 hours between impacts. The mice had deficits in Morris water maze performance in the first week after injury that only partially resolved 7 weeks later. By routine histology, there was no apparent bleeding, neuronal cell loss, or tissue disruption, and amyloid precursor protein immunohistochemistry demonstrated very few immunoreactive axonal varicosities. In contrast, silver staining revealed extensive abnormalities in the corpus callosum and bilateral external capsule, the ipsilateral cortex and thalamus, and the contralateral hippocampal CA1 stratum radiatum and stratum oriens. Electron microscopy of white matter regions demonstrated axonal cytoskeletal disruption, intra-axonal organelle compaction, and irregularities in axon caliber. Reactive microglia were observed in the same areas as the injured axons by both electron microscopy and Iba1 immunohistochemistry. Quantitative analyses of silver staining and Iba1 immunohistochemistry at multiple time points demonstrated transient cortical and thalamic abnormalities but persistent white matter pathology as late as 7 weeks after injury.Thus, prominent and long-lasting abnormalities in this TBI model were underestimated using conventional approaches. The model may be useful for mechanistic investigations and preclinical assessment of candidate therapeutics.


Assuntos
Axônios/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Microglia/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Sintomas Comportamentais/etiologia , Lesões Encefálicas/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Corpo Caloso/patologia , Modelos Animais de Doenças , Fenômenos Eletromagnéticos , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Coloração pela Prata/métodos , Estatísticas não Paramétricas , Fatores de Tempo
11.
J Pharmacol Exp Ther ; 315(1): 163-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15976016

RESUMO

Metabotropic glutamate receptor type 1 (mGluR1) is thought to play important roles in the neurotransmission and pathogenesis of several neurological disorders. Here, we describe the radioligand binding properties and pharmacological effects of a newly synthesized, high-affinity, selective, and noncompetitive mGluR1 antagonist, 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198). YM-298198 inhibited glutamate-induced inositol phosphate production in mGluR1-NIH3T3 cells with an IC50 of 16 +/- 5.8 nM in a noncompetitive manner. Its radiolabeled form, [3H]YM-298198, bound to mGluR1-NIH3T3 cell membranes with a KD of 32 +/- 8.5 nM and a Bmax of 2297 +/- 291 fmol/mg protein. In ligand displacement experiments using rat cerebellum membrane, an existing noncompetitive mGluR1 antagonist 7-(hydroxyimino)cyclo-propa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) competitively displaced [3H]YM-298198 binding, although glutamate and other mGluR1 ligands acting on a glutamate site failed to inhibit [3H]YM-298198 binding, suggesting that YM-298198 binds to CPCCOEt (allosteric) binding sites but not to glutamate (agonist) binding sites. Specificity was demonstrated for mGluR1 over mGluR subtypes 2 to 7, ionotropic glutamate receptors, and other receptor, transporter, and ion channel targets. In in vivo experiments, orally administered YM-298198 showed a significant analgesic effect in streptozotocin-induced hyperalgesic mice at doses (30 mg/kg) that did not cause Rotarod performance impairment, indicating that it is also useful even for in vivo experiments. In conclusion, YM-298198 is a newly synthesized, high-affinity, selective, and noncompetitive antagonist of mGluR1 that will be a useful pharmacological tool due to its highly active properties in vitro and in vivo. Its radiolabeled form [3H]YM-298198 will also be a valuable tool for future investigation of the mGluR1.


Assuntos
Benzimidazóis/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/metabolismo , Analgesia , Animais , Benzimidazóis/farmacologia , Cerebelo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Células NIH 3T3 , Ensaio Radioligante , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/análise , Tiazóis/farmacologia
12.
Acta Neuropathol ; 108(5): 435-42, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15372280

RESUMO

Progression of neuritic dystrophy is a histological hallmark of Alzheimer's disease (AD) in addition to amyloid deposition and neurofibrillary tangle formation. Dystrophic neurites (DNs) are abnormal neurites, and are closely associated with amyloid deposits. To clarify the process of DN formation, we immunohistochemically investigated phosphorylated tau (AT8 and Ser396)-positive DNs and plaques in Tg2576 mice overexpressing human beta-amyloid precursor protein (APP) with the Swedish type mutation (K670N/M671L). AT8-positive DNs were exclusively associated with the Congo red-positive plaques examined, and all Abeta(1-40)-positive plaques appeared to be associated with AT8-positive DNs, whereas there were no AT8-positive DNs with Abeta(1-42)-positive/Abeta(1-40)-negative plaques. Since we have previously shown that Abeta(1-42)-positive plaque precede Abeta(1-40) deposition, the appearance of congophilic structures is also late. Quantitative analyses were performed on AT8-positive DNs that were associated with congophilic plaques in the cerebral cortex and hippocampus (more than 1,000 plaques). The number of congophilic plaques increased dramatically with age. The area of DNs in the cerebral cortex and hippocampus increased 120- and 60-fold from 11-13 to 20.5 months of age, respectively. Interestingly, the mean ratio of DN area to congophilic plaque area in every plaque was unchanged, approximately 10%, through the ages examined. The mean plaque size was stable with age in both the cortex and hippocampus. These data suggest that the formation of AT8-positive DNs is simultaneous with Congo red-positive plaque development, and that the event may be closely related in the pathological progression of AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Neuritos/patologia , Placa Amiloide/patologia , Proteínas tau/metabolismo , Fatores Etários , Doença de Alzheimer , Animais , Encéfalo/metabolismo , Vermelho Congo , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neuritos/metabolismo , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA