Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935589

RESUMO

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Assuntos
Células Ciliadas Auditivas Internas , Neurotrofina 3 , Sinapses , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Sinapses/metabolismo , Sinapses/fisiologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Camundongos , Limiar Auditivo , Potenciais Evocados Auditivos/fisiologia , Reflexo de Sobressalto/fisiologia , Percepção Auditiva/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Feminino , Masculino , Perda Auditiva Oculta
2.
J Physiol ; 600(1): 61-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761815

RESUMO

Understanding communication signals, especially in noisy environments, is crucial to social interactions. Yet, as we age, acoustic signals can be disrupted by cochlear damage and the subsequent auditory nerve fibre degeneration. The most vulnerable medium- and high-threshold-auditory nerve fibres innervate various cell types in the cochlear nucleus, among which the small cells are unique in receiving this input exclusively. Furthermore, small cells project to medial olivocochlear (MOC) neurons, which in turn send branched collaterals back into the small cell cap. Here, we use single-unit recordings to characterise small cell firing characteristics and demonstrate superior intensity coding in this cell class. We show converse effects when activating/blocking the MOC system, demonstrating that small-cell unique coding properties are facilitated by direct cholinergic input from the MOC system. Small cells also maintain tone-level coding in the presence of background noise. Finally, small cells precisely code low-frequency modulation more accurately than other ventral cochlear nucleus cell types, demonstrating accurate envelope coding that may be important for vocalisation processing. These results highlight the small cell olivocochlear circuit as a key player in signal processing in noisy environments, which may be selectively degraded in ageing or after noise insult. KEY POINTS: Cochlear nucleus small cells receive input from low/medium spontaneous rate auditory nerve fibres and medial olivocochlear neurons. Electrical stimulation of medial olivocochlear neurons in the ventral nucleus of the trapezoid body and blocking cholinergic input to small cells using atropine demonstrates an excitatory cholinergic input to small cells, which increases responses to suprathreshold sound. Unique inputs to small cells produce superior sound intensity coding. This coding of intensity is preserved in the presence of background noise, an effect exclusive to this cell type in the cochlear nucleus. These results suggest that small cells serve an essential function in the ascending auditory system, which may be relevant to disorders such as hidden hearing loss.


Assuntos
Núcleo Coclear , Corpo Trapezoide , Estimulação Acústica , Cóclea , Nervo Coclear , Núcleo Olivar
3.
J Physiol ; 599(2): 631-645, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103245

RESUMO

KEY POINTS: Inhibitory-interneuron networks, consisting of multiple forms of circuit motifs including reciprocal (inhibitory interneurons inhibiting other interneurons) and feedforward (inhibitory interneurons inhibiting principal neurons) connections, are crucial in processing sensory information. The present study applies a statistical method to in vivo multichannel spike trains of dorsal cochlear nucleus neurons to disentangle reciprocal and feedforward-inhibitory motifs. After inducing input-specific plasticity, reciprocal and feedforward inhibition are found to be differentially regulated, and the combined effect synergistically modulates circuit output. The findings highlight the interplay among different circuit motifs as a key element in neural computation. ABSTRACT: Inhibitory interneurons play an essential role in neural computations by utilizing a combination of reciprocal (interneurons inhibiting each other) and feedforward (interneuron inhibiting the principal neuron) inhibition to process information. To disentangle the interplay between the two inhibitory-circuit motifs and understand their effects on the circuit output, in vivo recordings were made from the guinea pig dorsal cochlear nucleus, a cerebellar-like brainstem circuit. Spikes from inhibitory interneurons (cartwheel cell) and principal output neurons (fusiform cell) were compared before and after manipulating their common multimodal input. Using a statistical model based on the Cox method of modulated renewal process of spike train influence, reciprocal- and feedforward-inhibition motifs were quantified. In response to altered multimodal input, reciprocal inhibition was strengthened while feedforward inhibition was weakened, and the two motifs combined to modulate fusiform cell output and acoustic-driven responses. These findings reveal the cartwheel cell's role in auditory and multimodal processing, as well as illustrated the balance between different inhibitory-circuit motifs as a key element in neural computation.


Assuntos
Núcleo Coclear , Inibição Neural , Animais , Cerebelo , Cobaias , Interneurônios , Neurônios
4.
Neural Plast ; 2021: 8833087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510780

RESUMO

Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Ruído/efeitos adversos , Zumbido/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Vias Auditivas/metabolismo , Vias Auditivas/patologia , Feminino , Neurônios GABAérgicos/química , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Cobaias , Hipocampo/patologia , Masculino , Sinapses/química , Sinapses/metabolismo , Zumbido/patologia , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/análise
5.
J Neurosci ; 38(11): 2832-2843, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29440557

RESUMO

Temporal coding of auditory stimuli is critical for understanding communication signals. The bushy cell, a major output neuron of the ventral cochlear nucleus, can "phase-lock" precisely to pure tones and the envelopes of complex stimuli. Bushy cells are also putative recipients of brainstem somatosensory projections and could therefore play a role in perception of communication signals because multisensory integration is required for such complex sound processing. Here, we examine the role of multisensory integration in temporal coding in bushy cells by activating the spinal trigeminal nucleus (Sp5) while recording responses from bushy cells. In normal-hearing guinea pigs of either sex, bushy cell single unit responses to amplitude-modulated (AM) broadband noise were compared with those in the presence of preceding Sp5 electrical stimulation (i.e., bimodal stimuli). Responses to the AM stimuli were also compared with those obtained 45 min after the bimodal stimulation. Bimodal auditory-Sp5 stimulation resulted in enhanced envelope coding for low modulation frequencies, which persisted for up to 45 min. AM detection thresholds were significantly improved 45 min after bimodal auditory-Sp5 stimulation, but not during bimodal auditory-Sp5 stimulation. Anterograde labeling of Sp5 projections was found within the dendritic fields of bushy cells and their inhibitory interneurons, D-stellate cells. Therefore, enhanced AM responses and improved AM sensitivity of bushy cells were likely facilitated by Sp5 neurons through monosynaptic excitatory projections and indirect inhibitory projections. These somatosensory projections may be involved in the improved perception of communication stimuli with multisensory stimulation, consistent with psychophysical studies in humans.SIGNIFICANCE STATEMENT Multisensory integration is crucial for sensory coding because it improves sensitivity to unimodal stimuli and enhances responses to external stimuli. Although multisensory integration has typically been described in the cerebral cortex, the cochlear nucleus in the brainstem is also innervated by multiple sensory systems, including the somatosensory and auditory systems. Here, we showed that convergence of these two sensory systems in the cochlear nucleus results in improved temporal coding in bushy cells, principal output neurons that send projections to higher auditory structures. The improved temporal coding instilled by bimodal auditory-Sp5 stimulation may be important in priming the neurons for coding biologically relevant sounds such as communication signals.


Assuntos
Núcleo Coclear/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Tronco Encefálico/fisiologia , Dendritos/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Cobaias , Interneurônios/fisiologia , Masculino , Núcleo Espinal do Trigêmeo/fisiologia
6.
Hippocampus ; 29(8): 669-682, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30471164

RESUMO

Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap-prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude-intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2-weeks following noise-exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20-60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus-specific changes were particularly prominent in hippocampal synapse-rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus-specific changes occurred in synapse-rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.


Assuntos
Neurônios Colinérgicos/fisiologia , Hipocampo/fisiopatologia , Zumbido/fisiopatologia , Estimulação Acústica , Animais , Modelos Animais de Doenças , Cobaias , Hipocampo/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Ruído , Reflexo de Sobressalto/fisiologia , Zumbido/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
7.
J Physiol ; 596(18): 4537-4548, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30074618

RESUMO

KEY POINTS: Dorsal cochlear nucleus fusiform cells receive spectrally relevant auditory input for sound localization. Fusiform cells integrate auditory with other multisensory inputs. Here we elucidate how somatosensory and vestibular stimulation modify the fusiform cell spatial code through activation of an inhibitory interneuron: the ventral cochlear nucleus D-stellate cell. These results suggests that multisensory cues interact early in an ascending sensory pathway to serve an essential function. ABSTRACT: In the cochlear nucleus (CN), the first central site for coding sound location, numerous multisensory projections and their modulatory effects have been reported. However, multisensory influences on sound location processing in the CN remain unknown. The principal output neurons of the dorsal CN, fusiform cells, encode spatial information through frequency-selective responses to direction-dependent spectral features. Here, single-unit recordings from the guinea pig CN revealed transient alterations by somatosensory and vestibular stimulation in fusiform cell spatial coding. Changes in fusiform cell spectral sensitivity correlated with multisensory modulation of ventral CN D-stellate cell responses, which provide direct, wideband inhibition to fusiform cells. These results suggest that multisensory inputs contribute to spatial coding in DCN fusiform cells via an inhibitory interneuron, the D-stellate cell. This early multisensory integration circuit likely confers important consequences on perceptual organization downstream.


Assuntos
Núcleo Coclear/fisiologia , Interneurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Localização de Som , Animais , Núcleo Coclear/citologia , Feminino , Cobaias , Masculino , Inibição Neural
8.
J Neurosci ; 36(6): 2068-73, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865628

RESUMO

Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT: Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures.


Assuntos
Núcleo Coclear/patologia , Zumbido/patologia , Algoritmos , Animais , Fenômenos Eletrofisiológicos , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Cobaias , Modelos Neurológicos , Ruído , Reflexo de Sobressalto
9.
J Neurophysiol ; 117(3): 1229-1238, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003407

RESUMO

Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N-methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology.NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of muscarinic acetylcholine receptors (mAChRs) to in vivo fusiform cell baseline activity and auditory-somatosensory plasticity. We have determined that blocking the mAChRs increases the synchronization of spiking activity across the fusiform cell population and induces a dominant pattern of inversion in their stimulus timing-dependent plasticity. These modifications are consistent with similar changes established in previous tinnitus studies, suggesting that mAChRs might have a critical contribution in mediating the maladaptive alterations associated with tinnitus pathology. Blocking mAChRs also resulted in decreased fusiform cell spontaneous firing rates, which is in contrast with their tinnitus hyperactivity, suggesting that changes in the interactions between the cholinergic and GABAergic systems might also be an underlying factor in tinnitus pathology.


Assuntos
Núcleo Coclear/citologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores Muscarínicos/metabolismo , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Atropina/farmacologia , Nervo Coclear/fisiologia , Sistemas de Liberação de Medicamentos , Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Face/fisiologia , Cobaias , Antagonistas Muscarínicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fatores de Tempo
10.
J Neurophysiol ; 113(3): 956-70, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25392166

RESUMO

Tinnitus has been associated with enhanced central gain manifested by increased spontaneous activity and sound-evoked firing rates of principal neurons at various stations of the auditory pathway. Yet, the mechanisms leading to these modifications are not well understood. In a recent in vivo study, we demonstrated that stimulus-timing-dependent bimodal plasticity mediates modifications of spontaneous and tone-evoked responses of fusiform cells in the dorsal cochlear nucleus (DCN) of the guinea pig. Fusiform cells from sham animals showed primarily Hebbian learning rules while noise-exposed animals showed primarily anti-Hebbian rules, with broadened profiles for the animals with behaviorally verified tinnitus (Koehler SD, Shore SE. J Neurosci 33: 19647-19656, 2013a). In the present study we show that well-timed bimodal stimulation induces alterations in the rate-level functions (RLFs) of fusiform cells. The RLF gains and maximum amplitudes show Hebbian modifications in sham and no-tinnitus animals but anti-Hebbian modifications in noise-exposed animals with evidence for tinnitus. These findings suggest that stimulus-timing bimodal plasticity produced by the DCN circuitry is a contributing mechanism to enhanced central gain associated with tinnitus.


Assuntos
Potenciais Evocados Auditivos , Plasticidade Neuronal , Zumbido/fisiopatologia , Animais , Núcleo Coclear/citologia , Núcleo Coclear/fisiologia , Núcleo Coclear/fisiopatologia , Feminino , Cobaias , Neurônios/fisiologia , Ruído
11.
J Neurophysiol ; 114(6): 3064-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26289461

RESUMO

Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit.


Assuntos
Córtex Auditivo/fisiologia , Núcleo Coclear/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Potenciais Somatossensoriais Evocados , Plasticidade Neuronal , Zumbido/fisiopatologia , Animais , Feminino , Cobaias , Ruído
12.
Cell Tissue Res ; 361(1): 233-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25526698

RESUMO

Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.


Assuntos
Córtex Somatossensorial/metabolismo , Vias Auditivas , Percepção Auditiva , Córtex Somatossensorial/citologia
13.
J Neurosci ; 33(50): 19647-56, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336728

RESUMO

Tinnitus and cochlear damage have been associated with changes in somatosensory-auditory integration and plasticity in the dorsal cochlear nucleus (DCN). Recently, we demonstrated in vivo that DCN bimodal plasticity is stimulus timing-dependent, with Hebbian and anti-Hebbian timing rules that reflect in vitro spike timing-dependent plasticity. In this in vivo study, we assessed the stimulus timing dependence of bimodal plasticity in a tinnitus model. Guinea pigs were exposed to a narrowband noise that produced a temporary elevation of auditory brainstem response thresholds. A total of 60% of the guinea pigs developed tinnitus as indicated by gap-induced prepulse inhibition of the acoustic startle. After noise exposure and tinnitus induction, stimulus timing-dependent plasticity was measured by comparing responses to sound before and after paired somatosensory and auditory stimulation presented with varying intervals and orders. In comparison with Sham and noise-exposed animals that did not develop tinnitus, timing rules in verified tinnitus animals were more likely to be anti-Hebbian and broader for those bimodal intervals in which the neural activity showed enhancement. Furthermore, units from exposed animals with tinnitus were more weakly suppressed than either Sham animals or exposed animals without tinnitus. The broadened timing rules in the enhancement phase in animals with tinnitus, and in the suppressive phase in exposed animals without tinnitus was in contrast to narrow, Hebbian-like timing rules in Sham animals. These findings implicate alterations in DCN bimodal spike timing-dependent plasticity as underlying mechanisms in tinnitus, opening the way for a therapeutic target.


Assuntos
Núcleo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Zumbido/fisiopatologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Modelos Animais de Doenças , Cobaias
14.
JAMA Netw Open ; 6(6): e2315914, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37266943

RESUMO

Importance: Animal models have shown altered dorsal cochlear nucleus circuitry in animals that develop tinnitus; however, precise treatment using bisensory (auditory and somatosensory) stimuli can reverse altered neural patterns and lessen tinnitus. Objective: To confirm and extend the findings of a pilot study, which suggested an increased efficacy of bisensory stimulation, to a clinical trial with a greater duration and greater number of participants. Design, Setting, and Participants: This double-blind, crossover, single-center randomized clinical trial was conducted from March 2019, with a 3-month follow-up per participant ending in July 2022. Eligible adults were recruited from the University of Michigan Health System in Ann Arbor, Michigan. Eligibility criteria included bothersome tinnitus (Tinnitus Functional Index [TFI] score, ≥17 points), somatic tinnitus, normal to moderate hearing loss, and no other tinnitus treatments in the 6 months prior to the trial. Included participants were randomized to either treatment group 1, which received active (bisensory) treatment, or group 2, which received the control (auditory-only) treatment. Results were analyzed using intent-to-treat (ITT) and per protocol (PP) populations. Intervention: Precisely timed bisensory (combined auditory and somatosensory) treatment was delivered through a portable, custom, take-home device that was provided to each participant for daily, at-home treatments. Group 1 participants received 30 minutes per day of the bisensory treatment for 6 weeks, followed by a 6-week washout phase, and then 30 minutes per day of the auditory-only treatment followed by a second 6-week washout phase. Group 2 participants received the auditory-only treatment first, followed by a washout phase, and then the bisensory treatment followed by a second washout phase. Main Outcomes and Measures: Primary end points were changes in TFI score and tinnitus loudness level from baseline through week 6 and week 12. Results: Of 337 screened individuals, 99 (mean [SD] age, 47 [12.7] years; 59 males [60%]; 85 with non-Hispanic White [86%] race and ethnicity) were enrolled into the study and randomized to treatment group 1 (n = 49) or group 2 (n = 50). The active but not the control treatment resulted in clinically significant decreases in TFI scores at week 6 of phase 1 (ITT population: -12.0 [95% CI, -16.9 to -7.9] points; P < .001; PP population: -13.2 [95% CI, -16.0 to -10.5] points; P < .001). Decreases in tinnitus loudness level were greater than 6 dB sensation level (SL; >half as loud) at week 6 for the bisensory treatment group, with little effect for the auditory-only treatment control group at week 6 of phase 1 (ITT population: -5.8 [95% CI, -9.5 to -2.2] dB; P = .08; PP population: -7.2 [95% CI, -11.4 to -3.1] dB; P = .03), and up to 11 dB SL at week 12 of phase 2 (ITT population: -10.9 [95% CI, -15.2 to -6.5] dB; P = .001; PP population: -14.1 [95% CI, -18.4 to -9.8] dB; P < .001). Decreased tinnitus loudness level and TFI scores extended into the washout phase, indicating a prolonged treatment effect. Conclusions and Relevance: This trial found that precisely timed bisensory treatment using stimuli and timing developed in a validated animal model was effective for adults with somatic tinnitus. Prolonged reduction in tinnitus symptoms can result from using an extended treatment duration. Trial Registration: ClinicalTrials.gov Identifier: NCT03621735.


Assuntos
Perda Auditiva , Zumbido , Masculino , Humanos , Zumbido/terapia , Resultado do Tratamento , Projetos Piloto , Encéfalo
15.
J Neurosci ; 30(45): 14972-9, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068300

RESUMO

Tinnitus is a phantom sound (ringing of the ears) that affects quality of life for millions around the world and is associated in most cases with hearing impairment. This symposium will consider evidence that deafferentation of tonotopically organized central auditory structures leads to increased neuron spontaneous firing rates and neural synchrony in the hearing loss region. This region covers the frequency spectrum of tinnitus sounds, which are optimally suppressed following exposure to band-limited noise covering the same frequencies. Cross-modal compensations in subcortical structures may contribute to tinnitus and its modulation by jaw-clenching and eye movements. Yet many older individuals with impaired hearing do not have tinnitus, possibly because age-related changes in inhibitory circuits are better preserved. A brain network involving limbic and other nonauditory regions is active in tinnitus and may be driven when spectrotemporal information conveyed by the damaged ear does not match that predicted by central auditory processing.


Assuntos
Vias Auditivas/fisiopatologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Zumbido/etiologia , Fatores Etários , Humanos , Ruído , Zumbido/fisiopatologia
16.
Eur J Neurosci ; 33(3): 409-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21198989

RESUMO

In addition to auditory inputs, dorsal cochlear nucleus (DCN) pyramidal cells in the guinea pig receive and respond to somatosensory inputs and perform multisensory integration. DCN pyramidal cells respond to sounds with characteristic spike-timing patterns that are partially controlled by rapidly inactivating potassium conductances. Deactivating these conductances can modify both spike rate and spike timing of responses to sound. Somatosensory pathways are known to modify response rates to subsequent acoustic stimuli, but their effect on spike timing is unknown. Here, we demonstrate that preceding tonal stimulation with spinal trigeminal nucleus (Sp5) stimulation significantly alters the first spike latency, the first interspike interval and the average discharge regularity of firing evoked by the tone. These effects occur whether the neuron is excited or inhibited by Sp5 stimulation alone. Our results demonstrate that multisensory integration in DCN alters spike-timing representations of acoustic stimuli in pyramidal cells. These changes likely occur through synaptic modulation of intrinsic excitability or synaptic inhibition.


Assuntos
Vias Aferentes/fisiologia , Núcleo Coclear/fisiologia , Células Piramidais/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Feminino , Cobaias
17.
Sci Rep ; 11(1): 6887, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767295

RESUMO

Multisensory integration of auditory and tactile information occurs already at the level of the cochlear nucleus. Rodents use their whiskers for tactile perception to guide them in their exploration of the world. As nocturnal animals with relatively poor vision, audiotactile interactions are of great importance for this species. Here, the influence of whisker deflections on sound-evoked spiking in the cochlear nucleus was investigated in vivo in anesthetized mice. Multichannel, silicon-probe electrophysiological recordings were obtained from both the dorsal and ventral cochlear nucleus. Whisker deflections evoked an increased spiking activity in fusiform cells of the dorsal cochlear nucleus and t-stellate cells in ventral cochlear nucleus, whereas bushy cells in the ventral cochlear nucleus showed a more variable response. The response to broadband noise stimulation increased in fusiform cells and primary-like bushy cells when the sound stimulation was preceded (~ 20 ms) by whisker stimulation. Multi-sensory integration of auditory and whisker input can thus occur already in this early brainstem nucleus, emphasizing the importance of early integration of auditory and somatosensory information.


Assuntos
Estimulação Acústica , Núcleo Coclear/fisiologia , Potenciais Somatossensoriais Evocados , Inibição Neural , Neurônios/fisiologia , Sensação/fisiologia , Vibrissas/fisiologia , Animais , Núcleo Coclear/citologia , Estimulação Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia
18.
Curr Top Behav Neurosci ; 51: 295-323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33083999

RESUMO

Tinnitus, or the phantom perception of sound, arises from pathological neural activity. Neurophysiological research has shown increased spontaneous firing rates and synchronization along the auditory pathway correlate strongly with behavioral measures of tinnitus. Auditory neurons are plastic, enabling external stimuli to be utilized to elicit long-term changes to spontaneous firing and synchrony. Pathological plasticity can thus be reversed using bimodal auditory plus nonauditory stimulation to reduce tinnitus. This chapter discusses preclinical and clinical evidence for efficacy of bimodal stimulation treatments of tinnitus, with highlights on sham-controlled, double-blinded clinical trials. The results from these studies have shown some efficacy in reducing the severity of tinnitus, based on subjective and objective outcome measures including tinnitus questionnaires and psychophysical tinnitus measurements. While results of some studies have been positive, the degree of benefit and the populations that respond to treatment vary across the studies. Directions and implications of future studies are discussed.


Assuntos
Zumbido , Estimulação Acústica , Estimulação Elétrica , Humanos , Neurônios , Projetos de Pesquisa , Zumbido/terapia
19.
Sci Rep ; 10(1): 20594, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244141

RESUMO

Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.


Assuntos
Núcleo Coclear/patologia , Hiperacusia/patologia , Animais , Nervo Coclear/patologia , Núcleo Coclear/citologia , Potenciais Evocados Auditivos , Feminino , Cobaias , Hiperacusia/etiologia , Percepção Sonora , Ruído/efeitos adversos , Zumbido/etiologia , Zumbido/patologia
20.
Neuron ; 103(1): 8-20, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271756

RESUMO

Tinnitus, sound perception in the absence of physical stimuli, occurs in 15% of the population and is the top-reported disability for soldiers after combat. Noise overexposure is a major factor associated with tinnitus but does not always lead to tinnitus. Furthermore, people with normal audiograms can get tinnitus. In animal models, equivalent cochlear damage occurs in animals with and without behavioral evidence of tinnitus. But cochlear-nerve-recipient neurons in the brainstem demonstrate distinct, synchronized spontaneous firing patterns only in animals that develop tinnitus, driving activity in central brain regions and ultimately giving rise to phantom perception. Examining tinnitus-specific changes in single-cell populations enables us to begin to distinguish neural changes due to tinnitus from those that are due to hearing loss.


Assuntos
Ruído/efeitos adversos , Zumbido/fisiopatologia , Animais , Cóclea/inervação , Cóclea/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Humanos , Zumbido/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA