Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117800

RESUMO

BACKGROUND: Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS: The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS: CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION: Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.

2.
J Bone Jt Infect ; 9(2): 121-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779579

RESUMO

Introduction: Osteomyelitis is a challenging bone infection associated with ischemia, trauma, or various surgical procedures (e.g., joint reconstruction). Treatment involves eradicating infected bone and soft tissue, local antibiotic delivery, and a 6-week course of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) infections are common, and vancomycin is the standard treatment, but alternatives like linezolid are needed in vancomycin-resistant and vancomycin-allergic patients. Methods: A retrospective chart review was conducted on patients treated by the senior author between 2013 and 2021. The study included patients who received local delivery of linezolid for bone and/or joint infection with documented evidence of vancomycin allergy. Patient demographics, surgical details, linezolid delivery method, and outcomes were recorded. Clinical outcomes and subsequent procedures leading to infection eradication were documented. Results: A total of 13 patients were treated with linezolid-antibiotic-laden spacers with polymethyl methacrylate (PMMA) carrier. Nine patients were successfully treated using limb-salvage techniques and were still infection-free after a mean follow-up of 55.5 months. Conclusions: Linezolid-loaded bone cement is an option for managing chronic bone and joint infections, particularly MRSA, in patients with vancomycin allergy.

3.
JAC Antimicrob Resist ; 6(2): dlae035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476771

RESUMO

Objectives: Data on antimicrobial resistance (AMR) among children in Nepal are limited. Here we have characterized the causes of bacterial bloodstream infections (BSIs), antimicrobial resistance patterns and the mechanisms of ß-lactamase production in Enterobacterales among children attending outpatient and inpatient departments of a secondary care paediatric hospital in Nepal. Methods: We retrospectively collected demographic and clinical data of culture-proven bacterial BSIs between January 2017 and December 2022 among children <18 years attending a 50-bedded paediatric hospital. Stored isolates were subcultured for antimicrobial susceptibility testing against commonly used antimicrobials. Enterobacterales displaying non-susceptibility to ß-lactams were phenotypically and genotypically investigated for ESBLs, plasmid-mediated AmpC (pAmpC) ß-lactamases and carbapenemases. Results: A total of 377 significant bacteria were isolated from 27 366 blood cultures. Among 91 neonates with a BSI, Klebsiella pneumoniae (n = 39, 42.4%), Pseudomonas aeruginosa (n = 15, 16.3%) and Acinetobacter baumannii complex (n = 13, 14.1%) were most common. In the non-neonates, 275/285 (96.5%) infections were community-acquired including Staphylococcus aureus (n = 89, 32.4%), Salmonella Typhi (n = 54, 19.6%) and Streptococcus pneumoniae (n = 32, 11.6%). Among the 98 S. aureus, 29 (29.6%) were methicillin-resistant Staphylococcus aureus. K. pneumoniae and Escherichia coli demonstrated non-susceptibility to extended-spectrum cephalosporins and carbapenems in both community and hospital-acquired cases. For E. coli and K. pneumoniae, blaCTX-M (45/46), blaEBC (7/10) and blaOXA-48 (5/6) were common among their respective groups. Conclusions: We determined significant levels of AMR among children attending a secondary care paediatric hospital with BSI in Nepal. Nationwide surveillance and implementation of antimicrobial stewardship policies are needed to combat the challenge imposed by AMR.

4.
Trop Med Health ; 52(1): 30, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589977

RESUMO

BACKGROUND: There is a lack of data on the characteristics of overlap between acquired antimicrobial resistance and virulence factors in Klebsiella pneumoniae in high-risk settings, especially with the inclusion of surveillance isolates along with the clinical. We investigated K. pneumoniae isolates, from a neonatal intensive care unit (NICU) in Nepal, for the presence of both accessory virulence factors and acquired antimicrobial resistance. METHODS: Thirty-eight clinical and nineteen surveillance K. pneumoniae isolates obtained between January 2017 and August 2022 in the NICU of Siddhi Memorial Hospital, Bhaktapur, Nepal were investigated with antimicrobial susceptibility testing, PCR-based detection of ß-lactamases and virulence factors, and genetic similarity by ERIC-PCR. RESULTS: K. pneumoniae was found positive in 37/85 (43.5%) blood culture-positive neonatal bloodstream infections, 34/954 (3.6%) patient surveillance cultures, and 15/451 (3.3%) environmental surveillance samples. Among 57 isolates analyzed in this study, we detected multidrug resistance in 37/57 (64.9%), which was combined with at least one accessory virulence factor in 21/37 (56.8%). This overlap was mostly among ß-lactamase producing isolates with accessory mechanisms of iron acquisition. These isolates displayed heterogenous ERIC-PCR patterns suggesting genetic diversity. CONCLUSIONS: The clinical significance of this overlap between acquired antimicrobial resistance and accessory virulence genes in K. pneumoniae needs further investigation. Better resource allocation is necessary to strengthen infection prevention and control interventions in resource-limited settings.

5.
Cancer Res ; 84(14): 2313-2332, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657108

RESUMO

Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.


Assuntos
Proliferação de Células , Coenzima A Ligases , Ácidos Graxos , Ferroptose , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Metabolismo dos Lipídeos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA