Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168633

RESUMO

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Assuntos
Astacoidea , Regulação da Expressão Gênica , Humanos , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Interferência de RNA , Proteínas de Artrópodes/genética , Mamíferos , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Fish Shellfish Immunol ; 140: 108931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437824

RESUMO

Endoplasmic reticulum oxidoreductase 1 (ERO1) is an important mediator in regulating disulfide bond formation and maintaining endoplasmic reticulum homeostasis. Its activity is transcriptionally regulated by the unfolded protein response (UPR) in the endoplasmic reticulum, which is known to be essential in immunity. However, whether ERO1 is involved in innate immunity in invertebrates remains unclear. In the present study, two subtypes of ERO1 from Scylla paramamosain were first identified and characterized. Sequence analysis revealed the conserved ERO1 domain and the oxidative capacity assay verified the oxidative capacity of SpERO1 recombinant protein. Moreover, SpERO1s were found to be ubiquitously expressed in all the tested tissues, with the highest expression observed in hemocytes. Two SpERO1s exhibited distinct expression patterns in response to Vibrio alginolyticus and White Spot Syndrome Virus (WSSV). Importantly, the downregulation of the expression of immune factors upon bacterial challenge in SpERO1-silenced crabs was observed. These results provided an initial foundation for further investigations into the role of ERO1 in the innate immunity of invertebrates.


Assuntos
Braquiúros , Animais , Oxirredutases , Imunidade Inata/genética , Bactérias/metabolismo , Proteínas Recombinantes , Proteínas de Artrópodes , Filogenia , Hemócitos , Perfilação da Expressão Gênica
3.
Fish Shellfish Immunol ; 140: 108944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451527

RESUMO

Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.


Assuntos
Astacoidea , Imunidade Inata , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Fosfolipases A2 , Fosfolipases A2 Citosólicas , Proteínas de Artrópodes , Mamíferos
4.
Fish Shellfish Immunol ; 143: 109183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884105

RESUMO

Smad,a member of the TGF-ß superfamily,controls cell proliferation,growth and guiding cell differentiation, thus playing a crucial role in diseases. However, the presence as well as specific function of Smad in crabs is still unknown. In this study, two Smads (Smad1 and Smad2/3) were identified for the first time from the mud crab Scylla paramamosain. The complete open reading frames of SpSmad1 and SpSmad2/3 were 1,497bp and 1,338bp, encoding deduced proteins of 498 and 445 amino acids respectively. Moreover, under the administration of Vibrio alginolyticus and WSSV, the relative expression levels of SpSmad1 and SpSmad2/3 were significantly increased, indicating their involvement in the innate immune response of mud crabs. Knockdown of SpSmad1 and SpSmad2/3 in vivo not only led to the increasement of the expressions of NF-κB signaling genes and antimicrobial peptides genes, but also significantly affected the bacterial clearance process of mud crabs. Additionally, overexpression of SpSmad1 and SpSmad2/3 in HEK293T cells could markedly activate NF-κB signaling. These results indicated that Smad1 and Smad2/3 participated in the innate immunity of Scylla paramamosain, and might provide a better understanding of the presence and immune regulatory functions of Smad1 and Smad2/3 in crabs and even invertebrates.


Assuntos
Braquiúros , NF-kappa B , Humanos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HEK293 , Filogenia , Proteínas de Artrópodes , Imunidade Inata/genética , Perfilação da Expressão Gênica
5.
Acta Pharmacol Sin ; 44(12): 2404-2417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580491

RESUMO

Dl-3-n-butylphthalide (NBP) is a small-molecule drug used in the treatment of ischemic stroke in China, which is proven to ameliorate the symptoms of ischemic stroke and improve the prognosis of patients. Previous studies have shown that NBP accelerates recovery after stroke by promoting angiogenesis. In this study, we investigated the mechanisms underlying the angiogenesis-promoting effects of NBP in ischemic stroke models in vitro and in vivo. OGD/R model was established in human umbilical vein endothelial cells (HUVECs) and human brain microvascular endothelial cells (HBMECs), while the tMCAO model was established in mice. The cells were pretreated with NBP (10, 50, 100 µM); the mice were administered NBP (4, 8 mg/kg, i.v.) twice after tMCAO. We showed that NBP treatment significantly stimulated angiogenesis by inducing massive production of angiogenic growth factors VEGFA and CD31 in both in vitro and in vivo models of ischemic stroke. NBP also increased the tubule formation rate and migration capability of HUVECs in vitro. By conducting the weighted gene co-expression network analysis, we found that these effects were achieved by upregulating the expression of a hedgehog signaling pathway. We demonstrated that NBP treatment not only changed the levels of regulators of the hedgehog signaling pathway but also activated the transcription factor Gli1. The pro-angiogenesis effect of NBP was abolished when the hedgehog signaling pathway was inhibited by GDC-0449 in HUVECs, by Sonic Hedgehog(Shh) knockdown in HUVECs, or by intracerebroventricular injection of AAV-shRNA(shh)-CMV in tMCAO mice. Furthermore, we found that HUVECs produced a pro-angiogenic response not only to autocrine Shh, but also to paracrine Shh secreted by astrocytes. Together, we demonstrate that NBP promotes angiogenesis via upregulating the hedgehog signaling pathway. Our results provide an experimental basis for the clinical use of NBP.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Proteínas Hedgehog/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
6.
J Invertebr Pathol ; 196: 107865, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36436575

RESUMO

FGFRs involved multiple physiological processes, such as endocrine homeostasis, wound repair, and cellular behaviors including proliferation, differentiation and survival. In the present study, the homologs of fibroblast growth factor receptor 4 (FGFR4) were identified and characterized from the red swamp crayfish Procambarus clarkii for the first time. The full-length cDNAs of pcFGFR4 were 2878 bp with 2451 bp open reading frame (ORF), respectively. The deduced pcFGFR4 protein contained an immunoglobulin, two immunoglobulin C-2 Type, a transmembrane region and a catalytic domain. Real-time PCR analysis showed that pcFGFR4 were highly expressed in muscle and hemocyte. Moreover, the expression levels of pcFGFR4 in the hepatopancreas and hemocyte were positively stimulated after challenge with Aeromonas hydrophila and WSSV, implying the involvement of pcFGFR4 against bacterial and viral infections in innate immune responses. While pcFGFR4 were silenced in vivo, the expression levels of antimicrobial peptide (AMP) genes (pcALF1-5,8 and pcCrustin1-2) and NF-κB signaling components (pcDrosal and pcRelish) were significantly reduced. Additionally, NF-κB signaling could be markedly activated by overexpression of pcFGFR4 in HEK293T cells. Finally, our results indicated that pcFGFR4 regulated crayfish's innate immunity by modulating NF-κB signaling. These findings may provide new insights into pcFGFR4-mediated signaling cascades in crustaceans and provide a better understanding of crustacean innate immune system.


Assuntos
Antivirais , Astacoidea , Animais , Humanos , Astacoidea/microbiologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , NF-kappa B/genética , Células HEK293 , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Artrópodes
7.
Fish Shellfish Immunol ; 131: 1255-1263, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427760

RESUMO

Drosophila mothers against decapentaplegic proteins (Smads), the crucial signal transducers in activating downstream gene transcription through transforming growth factor beta (TGF-ß) receptors, are the pleiotropic factors with important role in mediating cell proliferation, homeostasis, differentiation, apoptosis and immune response. However, whether Smads are involved in immune response in crustaceans remains unexplored. In the present study, the Smad3 and Smad4 were firstly identified and functionally characterized from the Red Swamp Crayfish Procambarus clarkii. The full-length cDNAs of pcSmad3 and pcSmad4 were 1, 670 bp and 3, 060 bp with 1, 326 bp and 1, 875 bp open reading frame (ORF), respectively. Real-time PCR analysis of the expression profiles demonstrated that pcSmad3 and pcSmad4 were predominantly expressed at in stomach, heart, and hemocytes. Notably, the expression levels of pcSmad3 and pcSmad4 both Aeromonas hydrophila and WSSV challenges were significantly altered, suggesting the involvement of pcSmad3 and pcSmad4 in innate immune responses. Knockdown of pcSmad3 and pcSmad4 in vivo dramatically activated the transcriptions of NF-κB signaling genes and anti-lipopolysaccharide factor genes. The overexpression of pcSmad3 and pcSmad4 could significantly activate NF-κB signaling in HEK293T cells. Meanwhile, the clearance of bacteria was significantly reduced with knockdown of pcSmad3 and pcSmad4 in vivo. Results indicated that pcSmad3 and pcSmad4 played an immune-regulatory role in crayfish's innate immunity, which might pave the for a better understanding of the TGF-ß superfamily members in crustacean.


Assuntos
Astacoidea , NF-kappa B , Animais , Humanos , Drosophila , Células HEK293 , Sequência de Aminoácidos , Imunidade Inata/genética , Fator de Crescimento Transformador beta/genética , Proteínas de Artrópodes/genética
8.
Fish Shellfish Immunol ; 127: 13-22, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35667540

RESUMO

Smads, part of signaling cascades that represent downstream pathways of the TGF-ß super family proteins, are pleiotropic cytokines with important role in mediating cell proliferation, homeostasis, differentiation, apoptosis and immune response. However, the specific functions of Smads remain unknown in crustaceans. In the present study, the drosophila mothers against decapentaplegic protein gene 1 (Smad1) was firstly identified and characterized from the Red Swamp Crayfish Procambarus clarkii. The obtained cDNA sequence of pcSmad1was 2, 503 bp long with a 1, 488 bp open reading fame, which encoded a putative protein of 496 amino acids. Furthermore, pcSmad1 responded to both Aeromonas hydrophila and WSSV challenge, suggesting the involvement of pcSmad1 in innate immune responses. Knockdown of pcSmad1 in vivo dramatically increased the expressions of NF-κB signaling genes and anti-lipopolysaccharide factor genes. Additionally, overexpression of pcSmad1 in HEK293T cells could markedly activate NF-κB signaling. Taken together, these results indicated that pcSmad1 played an immune-regulatory role in crayfish's innate immunity, which may provide a better understanding of TGF-ß superfamily members in crustacean.


Assuntos
Astacoidea , Drosophila , Animais , Proteínas de Artrópodes , Astacoidea/genética , Células HEK293 , Humanos , Imunidade Inata/genética , NF-kappa B , Fator de Crescimento Transformador beta/genética
9.
Fish Shellfish Immunol ; 131: 602-611, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064005

RESUMO

The fibroblast growth factor receptor (FGFR) belongs to the tyrosine kinase family consisting of four members (FGFR1-4). This study involved identification and characterization of FGFR1 and FGFR3 from mud crab Scylla paramamosain for the first time. The obtained cDNAs of SpFGFR1 and SpFGFR3 were 2,380 bp and 2,982 bp in length with a 1,503 bp and 2,310 bp open reading frame, respectively. The predicted SpFGFR1 protein included three immunoglobulin domains and a transmembrane region, while SpFGFR3 protein possessed a typical TyrKc (Tyrosine kinase, catalytic) domain. Real-time PCR analysis showed that SpFGFR1 and SpFGFR3 were highly expressed in the hepatopancreas. Furthermore, the expression levels of SpFGFR1 and SpFGFR3 in the hepatopancreas were enhanced following challenges with Vibro alginolyticus, Staphylococcus aureus, Poly (I:C) and White spot syndrome virus, which shows the involvement of SpFGFR1 and SpFGFR3 in innate immune response to infections from bacteria and virus. There was significant suppression of six antimicrobial peptide genes (SpALF1-5 and SpCrustin) and three NF-κB members (SpDorsal, SpIKK and SpRelish) when SpFGFR1 and SpFGFR3 was interfered in vivo. Also, treatment of the hemocytes with specific inhibitor of SpFGFR for 24 h consistently down-regulated SpDorsal, SpRelish and AMPs. These results suggested that SpFGFR1 and SpFGFR3 played important roles in regulating the Toll signaling pathway and immune deficiency (IMD) pathway through NF-κB signaling pathway. These findings may provide new insights into the role of FGFRs in the innate immune function of crustaceans.


Assuntos
Braquiúros , Animais , NF-kappa B/metabolismo , Proteínas de Artrópodes , Receptores de Fatores de Crescimento de Fibroblastos/genética , Filogenia , Imunidade Inata/genética , Transdução de Sinais , Poli I-C/farmacologia , Proteínas Tirosina Quinases/genética
10.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293350

RESUMO

Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.


Assuntos
Actinas , Receptores de Progesterona , Gravidez , Feminino , Camundongos , Animais , Actinas/metabolismo , Receptores de Progesterona/metabolismo , Progesterona/metabolismo , RNA Interferente Pequeno/metabolismo , Faloidina/metabolismo , Implantação do Embrião , Útero/metabolismo , Músculo Liso/metabolismo
11.
Angew Chem Int Ed Engl ; 60(8): 4142-4149, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33169906

RESUMO

Coordination compounds are well-known compounds that are being used as new materials for lithium storage because of their unique advantages, that is, designable structures, abundant active sites, and facile as well as mild synthetic routes. However, the electrode stability, low rate performance, and cycle life of coordination compounds are currently the main issues preventing their application as electrode materials, and the lithium-storage mechanism in coordination networks is not well understood. Herein, isostructural one-dimensional coordination compounds were synthesized to study their lithium-storage performance. Co-HIPA and Ni-HIPA showed superior electrolyte stability than other M-HIPAs, and Co-HIPA displayed a superior reversible capacity and cycle stability, excellent rate performance, and clear voltage platform. DFT calculations and kinetic analysis revealed the influence of the metal center with different electronic structures on the lithium-storage mechanism.

12.
J Am Chem Soc ; 142(9): 4141-4153, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32048845

RESUMO

Unveiling the mystery of the contribution of nonsurface or noninterface sites in a catalyst to its catalytic performance remains a great challenge because of the difficulty in capturing precisely structural information (surface plus inner) encoded in the catalyst. This work attempts to elucidate the critical role of the internal vacancy in an atomically precise 24-atom gold cluster in regulating the catalytic performance on the hydrogenation reaction of CO2. The experiment results show that the Au24 cluster with internal vacancy can mitigate sintering and exhibit high catalytic activity under relatively harsh reaction conditions, in contrast to the structurally similar Au25 cluster without internal vacancy. Our computational study suggests that the internal vacancy in Au24 provides the cluster with much more structural flexibility, which may be crucial to resisting the aggregation of the cluster and further postponing the deactivation. The hydrogenation and coupling stages of the reaction intermediates are proposed to explain the potential reaction pathway of CO2 with H2 on the Au24 catalyst with internal vacancy.

13.
Chemistry ; 26(18): 4143-4149, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800117

RESUMO

The key to the electrochemical conversion of CO2 lies in the development of efficient electrocatalysts with ease of operation, good conductivity, and rich active sites that fulfil the desired reaction direction and selectivity. Herein, an oxidative etching of Au20 Cu80 alloy is used for the synthesis of a nanoporous Au3 Cu alloy, representing a facile strategy for tuning the surface electronic properties and altering the adsorption behavior of the intermediates. HRTEM, XPS, and EXAFS results reveal that the curved surface of the synthesized nanoporous Au3 Cu is rich in gold with unsaturated coordination conditions. It can be used directly as a self-supported electrode for CO2 reduction, and exhibits high Faradaic efficiency (FE) of 98.12 % toward CO at a potential of -0.7 V versus the reversible hydrogen electrode (RHE). The FE is 1.47 times that over the as-made single nanoporous Au. Density functional theory reveals that *CO has a relatively long distance on the surface of nanoporous Au3 Cu, making desorption of CO easier and avoiding CO poisoning. The Hirshfeld charge distribution shows that the Au atoms have a negative charge and the Cu atoms exhibit a positive charge, which separately bond to the C atom and O atom in the *COOH intermediate through a bidentate mode. This affords the lowest *COOH adsorption free energy and low desorption energy for CO molecules.

14.
Fish Shellfish Immunol ; 105: 41-52, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32629101

RESUMO

Transforming growth factor-ß type III receptor (TßR3), as a co-receptor of TGF-ß superfamily, plays critical roles in development and growth as well as some disease pathogeneses by presenting ligands to other receptors in vertebrates. However, the identification and functional characterization of TßR3 had not been reported yet in invertebrates. In the present study, TßR3 was first identified and characterized in mud crab Scylla paramamosain. The obtained cDNA length of SpTßR3 was 2, 424 bp with a 1, 854 bp open reading frame, which encoded a putative peptide of 617 amino acids containing a typical transmembrane region and a Zona pellucida (ZP) domain. Real-time PCR results showed that SpTßR3 was predominantly expressed at early embryonic development stage and early postmolt stage, suggesting its participation in development and growth. We report, for the first time in invertebrates, the challenge of both Vibro alginolyticus and Poly (I:C) could alter the expression patterns of SpTßR3. Notably, the expression levels of SpIKK, two NF-κB members (SpRelish and SpDorsal), and five antimicrobial peptide genes (SpCrustin and SpALF1-4) were significantly suppressed when SpTßR3 was interfered in vivo. Secondly, the overexpression of SpTßR3 in vitro could activate NF-κB signaling through the dual-luciferase reporter assays. Furthermore, the bacterial clearance assay after SpTßR3 was silenced in vivo highlighted the potential of SpTßR3 in activating the innate immune responses. These results implied the involvement of SpTßR3 in the innate immune responses by regulating the NF-κB pathway. This study first indicated that TßR3 was present in invertebrate, and it participated in not only the development and growth but also the innate immunity of S. paramamosain. It also provided new insights into the origin or evolution of TGF-ß receptors in crustacean species and even in invertebrates.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia , Poli I-C/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/química , Alinhamento de Sequência , Vibrio alginolyticus/fisiologia
15.
Curr Microbiol ; 77(2): 320-326, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811376

RESUMO

A Gram-stain-negative, rod-shaped, non-motile, facultatively anaerobic bacterium, designated FJ4-8T, was isolated from a rotten hemp rope in Chongqing City, PR China. Phylogenetic analysis of 16S rRNA gene sequences indicated that the isolate was closely related to members of the family Sphingobacteriaceae, with the highest similarity to Pedobacter tournemirensis TF5-37.2-LB10T (95.3%) and low similarities to all other species of the genus Pedobacter (90.4-93.9%). Phylogenetic analyses demonstrated that strain FJ4-8T formed a stable subclade with Pedobacter tournemirensis TF5-37.2-LB10T. The clade with these two strains branched adjacent to a clade containing three species of the genus Arcticibacter. MK-7 was detected as the only respiratory quinone. The major fatty acids composed iso-C15:0, iso-C17:0 3-OH and summed feature three. Phosphatidylethanolamine, three aminophospholipids and one unidentified lipid were found as the major polar lipids. The major polyamine was identified as sym-homospermidine. The DNA-DNA hybridization value between strain FJ4-8T and Pedobacter tournemirensis TF5-37.2-LB10T was 42.0 ± 2.5%. Based on its phylogenetic, chemotaxonomic and phenotypic characteristics, the novel strain and TF5-37.2-LB10T were found to be different from members of genera Pedobacter and Arcticibacter. FJ4-8T and TF5-37.2-LB10T represented different species. Therefore, FJ4-8T should be classified as a novel species of a novel genus in the family Sphingobacteriaceae, for which the name Pararcticibacter amylolyticus gen. nov., sp. nov. is proposed. The type strain is FJ4-8T (= KCTC 62640T = CCTCC AB 2018052T). The draft genome sequence is 6290, 449 bp in length, the genomic DNA G+C content was 44.4 mol%. Pedobacter tournemirensis TF5-37.2-LB10T should be transferred to the novel genus as Pararcticibacter tournemirensis comb. nov. (The type strain is TF5-37.2-LB10T (= DSM 23085T = CIP 110085T = MOLA 820T).


Assuntos
Bacteroidetes/classificação , Cannabis/microbiologia , Pedobacter/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Fish Shellfish Immunol ; 90: 80-90, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31022453

RESUMO

Transforming growth factor-ß-activating kinase 1 (TAK1) is essential for diverse important biological functions, such as innate immunity, development and cell survival. In the present study, the homologs of TAK1 and TAK1-binding protein 1 (TAB1) were identified and characterized from mud crab Scylla paramamosain for the first time. The full-length cDNAs of SpTAK1 and SpTAB1 were 2, 226 bp and 2, 433 bp with 1, 782 bp and 1, 533 bp open reading frame (ORF), respectively. The deduced SpTAK1 protein contained a conserved S_TKc (Serine/threonine protein kinases, catalytic) domain, and the putative SpTAB1 protein possessed a typical PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain and a potential TAK1 docking motif. Real-time PCR analysis showed that SpTAK1 and SpTAB1 were highly expressed at early development stages, suggesting their participation in crab's development process. Moreover, the expression levels of SpTAK1 and SpTAB1 in hepatopancreas were positively stimulated after challenge with Vibro alginolyticus and Poly (I:C), implying the involvement of SpTAK1 and SpTAB1 in innate immune responses against both bacterial and viral infections. When SpTAK1 or SpTAB1 were silenced in vivo, the expression levels of two IMDNFκB signaling components (SpIKKß and SpRelish) and six antimicrobial peptide (AMP) genes (SpALF1-5 and SpCrustin) were significantly reduced, and the bacteria clearance capacity of crabs was also markedly impaired in SpTAK1 or SpTAB1 silenced crabs. Additionally, overexpression of SpTAK1 and SpTAB1 in HEK293T cells could markedly activate the mammalian NF-κB signaling. Collectively, our results suggested that TAK1 and TAB1 regulated crab's innate immunity via modulating the IMDNFκB signaling. These findings may provide new insights into the TAK1/TAB1-mediated signaling cascades in crustaceans and pave the way for a better understanding of crustacean innate immune system.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Perfilação da Expressão Gênica , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Filogenia , Alinhamento de Sequência , Transdução de Sinais/genética
17.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30190316

RESUMO

Ambient temperature-associated stress can affect normal physiological functions in ectotherms. To assess the effects of cold or heat stress on amphibians, giant spiny frogs (Quasipaa spinosa) were acclimated at 22°C followed by exposure to 5°C or 30°C for 0, 3, 6, 12, 24 and 48 h, respectively. Histological alterations, apoptotic index, generation of mitochondrial reactive oxygen species (ROS), antioxidant activity indices and stress-response gene expression in frog livers were subsequently determined. Results showed that many fat droplets appeared after 12 h of heat stress and the percentage of melanomacrophage centres significantly changed after 48 h at both stress conditions. Furthermore, the mitochondrial ROS levels were elevated in a time-dependent manner up to 6 h and 12 h in the cold and heat stress groups, respectively. The activities of superoxide dismutase, glutathione peroxidase and catalase were successively increased with increasing periods of cold or heat exposure, and their gene expression levels showed similar changes in both stress conditions. Most tested heat shock protein (HSP) genes were sensitive to temperature exposure, and the expression profiles of most apoptosis-related genes was significantly upregulated at 3 and 48 h under cold and heat stress, respectively. Apoptotic index at 48 h under cold stress was significantly higher than that under heat stress. Notably, lipid droplets, HSP30, HSP70 and HSP110 might be suitable bioindicators of heat stress. The results of these alterations at physiological, biochemical and molecular levels might contribute to a better understanding of the stress response of Q. spinosa, and perhaps amphibians more generally, under thermal stress.


Assuntos
Anuros/fisiologia , Resposta ao Choque Frio/fisiologia , Resposta ao Choque Térmico/fisiologia , Fígado/fisiologia , Mitocôndrias/metabolismo , Transcriptoma , Animais , Antioxidantes/metabolismo , Anuros/genética , Apoptose/fisiologia , Resposta ao Choque Frio/genética , Resposta ao Choque Térmico/genética , Fígado/citologia , Fígado/ultraestrutura , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
18.
Fish Shellfish Immunol ; 81: 150-160, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30017928

RESUMO

Immune deficiency (IMD) pathway, one of the most essential pattern recognition receptor signaling pathways, plays vital roles in innate immune responses to eliminate pathogen infection in invertebrates. In the present study, an immune deficiency (IMD) gene and two NF-κB family members, Relish and Dorsal, were identified and characterized in mud crab Scylla paramamosain for the first time. The deduced SpIMD, SpRelish and SpDorsal protein contained conserved death domain and classical NF-κB domains, respectively. Phylogenetic analysis suggested that SpIMD was classified into the invertebrate IMD branch, and SpRelish could be classified into the type I NF-κB class while SpDorsal could be grouped into the type II NF-κB class. Tissue distribution results showed these three genes were ubiquitously expressed in all tested tissues. The expression patterns of IMD signaling pathway and NF-κB genes, including SpIMD, SpIKKß, SpIKKε, SpRelish and SpDorsal, were distinct when crabs were stimulated with Vibro alginolyticus, indicating that they might be involved in responding to bacterial infection. When SpIMD was silenced by in vivo RNA interference assay, the expression levels of IMD pathway and antimicrobial peptides (AMPs) genes, including SpIKKß, SpRelish, SpALF1-6 and SpCrustin, were significantly down-regulated (p < 0.05). Correspondingly, the bacteria clearance ability of hemolymph was extremely impaired in IMD silenced crabs. Overall, the IMD played vital roles in innate immune response by regulating the expressions of its down-stream signaling genes and AMPs in S. paramamosain. These findings might pave the way for a better understanding of innate immune system and establish a fundamental network for the IMD signaling pathway in crustaceans.


Assuntos
Infecções Bacterianas/imunologia , Braquiúros/imunologia , Imunidade Inata , Transdução de Sinais/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Braquiúros/genética , Perfilação da Expressão Gênica , Hemolinfa , NF-kappa B/genética , Filogenia , RNA , Vibrioses/imunologia , Vibrio alginolyticus
19.
Fish Shellfish Immunol ; 72: 459-469, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29108971

RESUMO

Hemocytes play essential roles in the innate immune system of crustaceans. Characterization of hemocytes from estuary mud crab Scylla paramamosain was performed by flow cytometry and morphological studies such as cytochemical staining and electron microscopy. The hemocyte subsets were further separated using a modified Percoll density gradient centrifugation method. Based on the morphological characteristics of the cells, three distinct categories of hemocytes were identified: granulocytes with abundant large granularity representing 5.27 ± 0.42%, semigranulocytes with small or less granularity representing 76.03 ± 3.34%, and hyalinocytes (18.70 ± 3.92%) which were almost no granularity. The total hemocyte cell count and the percentage of hemocyte subsets varied after pathogen infection, including Vibrio alginolyticus and the viral double-stranded RNA analog Poly (I:C). The phagocytic process is of fundamental importance for crustaceans' cellular immune response as well as development and survival. The results of the in vitro phagocytosis assays analyzed by flow cytometry demonstrated that granulocytes and semigranulocytes had significantly higher phagocytic ability than hyalinocytes. A primary culture system, L-15 medium supplemented with 5-10% fetal bovine serum, was developed to further investigate the immune function of hemocytes. Furthermore, adenovirus can be utilized to effectively transfer GFP gene into hemocytes. Overall, three hemocyte sub-populations of S. paramamosain were successfully discriminated, moreover, their response to pathogen infections, phagocytic activity and adenovirus mediated transfection were also investigated for the first time. This study may contribute to a better understanding of the innate immune system of estuary crabs.


Assuntos
Braquiúros/imunologia , Hemócitos/imunologia , Imunidade Inata , Poli I-C/farmacologia , Vibrio alginolyticus/fisiologia , Animais , Braquiúros/citologia , Braquiúros/ultraestrutura , Citometria de Fluxo , Hemócitos/classificação , Hemócitos/citologia , Hemócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fagocitose
20.
Antonie Van Leeuwenhoek ; 111(2): 265-273, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28980087

RESUMO

A novel aerobic bacterium, designated strain LAM9153T, was isolated from a saline soil sample collected from Lingxian County, Shandong Province, China. Cells of strain LAM9153T were observed to be Gram-stain negative, non-motile, non-spore-forming and rod-shaped. The new isolate grew optimally at 30-35 °C, pH 7.0 and 0.5% of NaCl concentration (w/v). According to the phylogenetic analysis based on the 16S rRNA gene sequence, strain LAM9153T shares high similarity with Chitinophaga terrae Gsoil 238T (96.9%) and Chitinophaga niabensis JS 13-10T (95.9%), forming a subcluster with C. terrae Gsoil 238T, Chitinophaga cymbidii R156-2T, C. niabensis JS 13-10T and Chitinophaga soli Gsoil 219T in the phylogenetic tree. The major cellular fatty acids (> 10%) were identified as iso-C15:0, iso-C17:0 3-OH and summed features 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant respiratory quinone was identified as menaquinone MK-7. The polar lipids consisted of phosphatidylethanolamine, aminophospholipid, three unidentified aminolipids and five unidentified lipids. The genomic DNA G+C content was determined to be 53.2 ± 1.6 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain LAM9153T is concluded to represent a novel species of the genus Chitinophaga, for which the name Chitinophaga salinisoli sp. nov. is proposed. The type strain is LAM9153T (= ACCC 19960T = JCM 30847T).


Assuntos
Bacteroidetes/classificação , Salinidade , Microbiologia do Solo , Solo/química , Bacteroidetes/citologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/fisiologia , Composição de Bases , Metabolômica/métodos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA