Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(17): 5527-32, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25775542

RESUMO

Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 µM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.


Assuntos
GMP Cíclico/metabolismo , Junções Comunicantes/metabolismo , Células da Granulosa/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Animais , GMP Cíclico/genética , Feminino , Junções Comunicantes/genética , Células da Granulosa/citologia , Hormônio Luteinizante/farmacologia , Meiose/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Oócitos/citologia
2.
Dev Biol ; 409(1): 194-201, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26522847

RESUMO

The meiotic cell cycle of mammalian oocytes starts during embryogenesis and then pauses until luteinizing hormone (LH) acts on the granulosa cells of the follicle surrounding the oocyte to restart the cell cycle. An essential event in this process is a decrease in cyclic GMP in the granulosa cells, and part of the cGMP decrease results from dephosphorylation and inactivation of the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase, also known as guanylyl cyclase B. However, it is unknown whether NPR2 dephosphorylation is essential for LH-induced meiotic resumption. Here, we prevented NPR2 dephosphorylation by generating a mouse line in which the seven regulatory serines and threonines of NPR2 were changed to the phosphomimetic amino acid glutamate (Npr2-7E). Npr2-7E/7E follicles failed to show a decrease in enzyme activity in response to LH, and the cGMP decrease was attenuated; correspondingly, LH-induced meiotic resumption was delayed. Meiotic resumption in response to EGF receptor activation was likewise delayed, indicating that NPR2 dephosphorylation is a component of the pathway by which EGF receptor activation mediates LH signaling. We also found that most of the NPR2 protein in the follicle was present in the mural granulosa cells. These findings indicate that NPR2 dephosphorylation in the mural granulosa cells is essential for the normal progression of meiosis in response to LH and EGF receptor activation. In addition, these studies provide the first demonstration that a change in phosphorylation of a transmembrane guanylyl cyclase regulates a physiological process, a mechanism that may also control other developmental events.


Assuntos
Hormônio Luteinizante/farmacologia , Meiose/efeitos dos fármacos , Oócitos/citologia , Oócitos/enzimologia , Receptores do Fator Natriurético Atrial/metabolismo , Serina/metabolismo , Treonina/metabolismo , Animais , GMP Cíclico/metabolismo , Epirregulina/farmacologia , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Guanilato Ciclase/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Ovinos
3.
Development ; 141(18): 3594-604, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25183874

RESUMO

In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte.


Assuntos
GMP Cíclico/metabolismo , Células da Granulosa/metabolismo , Hormônio Luteinizante/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Receptores do Fator Natriurético Atrial/metabolismo , Análise de Variância , Animais , Western Blotting , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Feminino , Imunoprecipitação , Peptídeo Natriurético Tipo C/metabolismo , Folículo Ovariano/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ratos , Receptores do Fator Natriurético Atrial/agonistas
4.
Biol Reprod ; 94(5): 110, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27009040

RESUMO

The meiotic cell cycle of mammalian oocytes in preovulatory follicles is held in prophase arrest by diffusion of cGMP from the surrounding granulosa cells into the oocyte. Luteinizing hormone (LH) then releases meiotic arrest by lowering cGMP in the granulosa cells. The LH-induced reduction of cGMP is caused in part by a decrease in guanylyl cyclase activity, but the observation that the cGMP phosphodiesterase PDE5 is phosphorylated during LH signaling suggests that an increase in PDE5 activity could also contribute. To investigate this idea, we measured cGMP-hydrolytic activity in rat ovarian follicles. Basal activity was due primarily to PDE1A and PDE5, and LH increased PDE5 activity. The increase in PDE5 activity was accompanied by phosphorylation of PDE5 at serine 92, a protein kinase A/G consensus site. Both the phosphorylation and the increase in activity were promoted by elevating cAMP and opposed by inhibiting protein kinase A, supporting the hypothesis that LH activates PDE5 by stimulating its phosphorylation by protein kinase A. Inhibition of PDE5 activity partially suppressed LH-induced meiotic resumption as indicated by nuclear envelope breakdown, but inhibition of both PDE5 and PDE1 activities was needed to completely inhibit this response. These results show that activities of both PDE5 and PDE1 contribute to the LH-induced resumption of meiosis in rat oocytes, and that phosphorylation and activation of PDE5 is a regulatory mechanism.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hormônio Luteinizante/farmacologia , Meiose/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
5.
Dev Biol ; 366(2): 308-16, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22546688

RESUMO

In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 min, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2h, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte.


Assuntos
Hormônio Luteinizante/metabolismo , Oócitos/metabolismo , Folículo Ovariano/enzimologia , Receptores do Fator Natriurético Atrial/metabolismo , Animais , GMP Cíclico/metabolismo , Feminino , Células da Granulosa/metabolismo , Hormônio Luteinizante/farmacologia , Meiose/efeitos dos fármacos , Camundongos , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Oócitos/citologia , Folículo Ovariano/citologia , Receptores do Fator Natriurético Atrial/antagonistas & inibidores
6.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986191

RESUMO

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations in the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase both result in decreased production of cyclic GMP in chondrocytes and severe short stature, causing achondroplasia (ACH) and acromesomelic dysplasia, type Maroteaux, respectively. Previously, we showed that an NPR2 agonist BMN-111 (vosoritide) increases bone growth in mice mimicking ACH (Fgfr3Y367C/+). Here, because FGFR3 signaling decreases NPR2 activity by dephosphorylating the NPR2 protein, we tested whether a phosphatase inhibitor (LB-100) could enhance BMN-111-stimulated bone growth in ACH. Measurements of cGMP production in chondrocytes of living tibias, and of NPR2 phosphorylation in primary chondrocytes, showed that LB-100 counteracted FGF-induced dephosphorylation and inactivation of NPR2. In ex vivo experiments with Fgfr3Y367C/+ mice, the combination of BMN-111 and LB-100 increased bone length and cartilage area, restored chondrocyte terminal differentiation, and increased the proliferative growth plate area, more than BMN-111 alone. The combination treatment also reduced the abnormal elevation of MAP kinase activity in the growth plate of Fgfr3Y367C/+ mice and improved the skull base anomalies. Our results provide a proof of concept that a phosphatase inhibitor could be used together with an NPR2 agonist to enhance cGMP production as a therapy for ACH.


Assuntos
Acondroplasia/genética , Desenvolvimento Ósseo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeo Natriurético Tipo C/análogos & derivados , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Piperazinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores do Fator Natriurético Atrial/agonistas , Animais , Doenças do Desenvolvimento Ósseo/genética , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Sinergismo Farmacológico , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Peptídeo Natriurético Tipo C/farmacologia , Tamanho do Órgão , Fosforilação , Cultura Primária de Células , Receptores do Fator Natriurético Atrial/genética , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento
7.
Endocrinology ; 159(5): 2142-2152, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608743

RESUMO

Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Ovulação/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/antagonistas & inibidores , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia
8.
Elife ; 62017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29199951

RESUMO

Activating mutations in fibroblast growth factor (FGF) receptor 3 and inactivating mutations in the NPR2 guanylyl cyclase both cause severe short stature, but how these two signaling systems interact to regulate bone growth is poorly understood. Here, we show that bone elongation is increased when NPR2 cannot be dephosphorylated and thus produces more cyclic GMP. By developing an in vivo imaging system to measure cyclic GMP production in intact tibia, we show that FGF-induced dephosphorylation of NPR2 decreases its guanylyl cyclase activity in growth plate chondrocytes in living bone. The dephosphorylation requires a PPP-family phosphatase. Thus FGF signaling lowers cyclic GMP production in the growth plate, which counteracts bone elongation. These results define a new component of the signaling network by which activating mutations in the FGF receptor inhibit bone growth.


Assuntos
Desenvolvimento Ósseo , Fatores de Crescimento de Fibroblastos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores do Fator Natriurético Atrial/metabolismo , Animais , GMP Cíclico/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA