Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 535(7610): 148-52, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27362227

RESUMO

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Piperidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Modelos Moleculares , Neoplasias/patologia , Proteína Oncogênica p21(ras)/metabolismo , Piperidinas/química , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirimidinas/química , Pirimidinas/uso terapêutico , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Biol Chem ; 291(41): 21669-21681, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27519412

RESUMO

Melanoma differentiation-associated gene 7 (MDA-7/IL-24) exhibits cytotoxic effects on tumor cells while sparing untransformed cells, and Bcl-x(L) is reported to efficiently block the induction of cell death by MDA-7/IL-24. The expression of Bcl-x(L) is regulated at the level of RNA splicing via alternative 5' splice site selection within exon 2 to produce either the pro-apoptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory previously reported that Bcl-x RNA splicing is dysregulated in a large percentage of human non-small cell lung cancer (NSCLC) tumors. Therefore, we investigated whether the alternative RNA splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24, which would suggest that specific NSCLC tumors are valid targets for this cytokine therapy. Adenovirus-delivered MDA-7/IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of varying oncogenotypes, which was preceded by a decrease in the ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expression. Importantly, both the expression of Bcl-x(L) and the loss of cell viability were "rescued" in Ad.mda-7-treated cells incubated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L) expression, which was again restored by Bcl-x(s) siRNA, suggesting the existence of a novel mechanism by which Bcl-x(s) mRNA restrains the expression of Bcl-x(L). In additional mechanistic studies, inhibition of SRC and PKCδ completely ablated the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA ratio and cell viability. These findings show that Bcl-x(s) expression is an important mediator of MDA-7/IL-24-induced cytotoxicity requiring the SRC/PKCδ signaling axis in NSCLC cells.


Assuntos
Processamento Alternativo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Interleucinas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Proteína bcl-X/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Interleucinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína Quinase C-delta/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Proteína bcl-X/genética
3.
J Biol Chem ; 288(12): 8575-8584, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23396972

RESUMO

Caspase-9 has two splice variants, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b, which are regulated by RNA trans-factors associated with exon 3 of caspase-9 pre-mRNA (C9/E3). In this study, we identified hnRNP U as an RNA trans-factor associated with C9/E3. Down-regulation of hnRNP U led to a decrease in the caspase-9a/9b mRNA ratio, demonstrating a novel enhancing function. Importantly, hnRNP U bound specifically to C9/E3 at an RNA cis-element previously reported as the binding site for the splicing repressor, hnRNP L. Phosphorylated hnRNP L interfered with hnRNP U binding to C9/E3, and our results demonstrate the importance of the phosphoinositide 3-kinase/AKT pathway in modulating the association of hnRNP U to C9/E3. Taken together, these findings show that hnRNP U competes with hnRNP L for binding to C9/E3 to enhance the inclusion of the four-exon cassette, and this splice-enhancing function is blocked by the AKT pathway via phosphorylation of hnRNP L.


Assuntos
Caspase 9/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Processamento Alternativo , Sequência de Bases , Sítios de Ligação , Caspase 9/metabolismo , Linhagem Celular Tumoral , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
J Lipid Res ; 54(7): 1834-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576683

RESUMO

Multiple reports have demonstrated a role for ceramide kinase (CERK) in the production of eicosanoids. To examine the effects of the genetic ablation of CERK on eicosanoid synthesis, primary mouse embryonic fibroblasts (MEFs) and macrophages were isolated from CERK(-/-) and CERK(+/+) mice, and the ceramide-1-phosphate (C1P) and eicosanoid profiles were investigated. Significant decreases were observed in multiple C1P subspecies in CERK-/- cells as compared to CERK(+/+) cells with overall 24% and 48% decreases in total C1P. In baseline experiments, the levels of multiple eicosanoids were significantly lower in the CERK(-/-) cells compared with wild-type cells. Importantly, induction of eicosanoid synthesis by calcium ionophore was significantly reduced in the CERK(-/-) MEFs. Our studies also demonstrate that the CERK(-/-) mouse has adapted to loss of CERK in regards to airway hyper-responsiveness as compared with CERK siRNA treatment. Overall, we demonstrate that there are significant differences in eicosanoid levels in ex vivo CERK(-/-) cells compared with wild-type counterparts, but the effect of the genetic ablation of CERK on eicosanoid synthesis and the serum levels of C1P was not apparent in vivo.


Assuntos
Modelos Animais de Doenças , Eicosanoides/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Prenhez , Animais , Células Cultivadas , Ceramidas/sangue , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Gravidez
5.
Bioorg Med Chem Lett ; 23(21): 5980-91, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018190

RESUMO

Over the past 15years there have been extensive efforts to understand and reduce the high attrition rates of drug candidates with an increased focus on physicochemical properties. The fruits of this labor have been the generation of numerous efficiency indices, metric-based rules and visualization tools to help guide medicinal chemists in the design of new compounds with more favorable properties. This deluge of information may have had the unintended consequence of further obfuscating molecular optimizations by the inability of these scoring functions, rules and guides to reach a consensus on when a particular transformation is identified as beneficial. In this manuscript, several composite parameters, or efficiency indices, are examined utilizing theoretical and experimental matched molecular pair analyses in order to understand the basis for how each will perform under varying scenarios of molecular optimizations. In contrast to empirically derived composite parameters based on heavy atom count, lipophilic efficiency (LipE) sets consistent expectations regardless of molecular weight or relative potency and can be used to generate consistent expectations for any matched molecular pair.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/química , Ligantes , Lipídeos/química , Modelos Moleculares , Peso Molecular
6.
Bioorg Med Chem Lett ; 23(21): 5992-6000, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24054120

RESUMO

Approaches to improve the efficiency of molecular optimizations have received great attention and numerous efficiency metrics have been introduced to assist in this effort. Optimization of properties is equally important to optimization of potency and therefore these metrics contain potency versus property calculations. Widespread use of a metric does not guarantee its accuracy and a further understanding of which, if any, metric increases the probability of success was sought. An analysis of LE, LELP and LipE based on theoretical and experimental data was performed demonstrating that LipE most strongly correlates with compound quality as defined by enthalpy-driven binding. The basis for the prioritization of LipE over other metrics in enthalpic optimizations is described.


Assuntos
Desenho de Fármacos , Lipídeos/química , Preparações Farmacêuticas/química , Termodinâmica , Ligantes , Modelos Moleculares
7.
ACS Med Chem Lett ; 14(12): 1692-1699, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116445

RESUMO

We have developed a chiral route toward the synthesis of muscarinic M4 agonists that was enabled by the biocatalytic synthesis of the key spirocyclic diamine building blocks 10 and 12. Using these bifunctional compounds we were able to optimize a synthetic sequence toward a collection of advanced intermediates for further elaboration. These advanced intermediates were then used as starting points for early medicinal chemistry and the identification of selective M1/M4 agonists.

8.
Bioconjug Chem ; 23(9): 1873-80, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22881865

RESUMO

Fullerenes are used across scientific disciplines because of their diverse properties gained by altering encapsulated or surface-bound components. In this study, the recently developed theranostic agent based on a radiolabeled functionalized metallofullerene ((177)Lu-DOTA-f-Gd(3)N@C(80)) was synthesized with high radiochemical yield and purity. The efficacy of this agent was demonstrated in two orthotopic xenograft brain tumor models of glioblastoma multiforme (GBM). A dose-dependent improvement in survival was also shown. The in vivo stability of the agent was verified through dual label measurements of biological elimination from the tumor. Overall, these results provide evidence that nanomaterial platforms can be used to deliver effective interstitial brachytherapy.


Assuntos
Braquiterapia , Neoplasias Encefálicas/radioterapia , Fulerenos/química , Glioblastoma/radioterapia , Nanotecnologia , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Glioblastoma/patologia , Camundongos , Camundongos Nus
9.
Drug Metab Dispos ; 40(5): 1041-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344701

RESUMO

Panobinostat (LBH589) is a novel pan-deacetylase inhibitor that is currently being evaluated in phase III clinical trials for treatment of Hodgkin's lymphoma and multiple myeloma. Under catalysis of recombinant human CYP3A4 and CYP2D6 coexpressed with human cytochrome P450 reductase in Escherichia coli JM109, five metabolites of panobinostat were produced via whole-cell biotransformation. The structures of the metabolites were elucidated with the spectroscopic methods mass spectrometry (MS) and NMR and revealed an oxidative cyclization of the ethyl-amino group to the methylindole moiety. The MS(2) spectrum of the cyclized metabolite showed a base peak, where the closed ring is reopened and that, taken as sole base for structure proposals, would have lead to wrong conclusions. The metabolites were substantially less potent deacetylase inhibitors than the parent compound.


Assuntos
Antineoplásicos , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Biocatálise , Biotransformação , Cromatografia Líquida de Alta Pressão , Ciclização , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Escherichia coli/genética , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis , Conformação Molecular , Panobinostat , Espectrometria de Massas em Tandem
10.
Artigo em Inglês | MEDLINE | ID: mdl-22297980

RESUMO

The crystal structures of tankyrase 1 (TNKS1) in complex with two small-molecule inhibitors, PJ34 and XAV939, both at 2.0 Å resolution, are reported. The structure of TNKS1 in complex with PJ34 reveals two molecules of PJ34 bound in the NAD(+) donor pocket. One molecule is in the nicotinamide portion of the pocket, as previously observed in other PARP structures, while the second molecule is bound in the adenosine portion of the pocket. Additionally, unlike the unliganded crystallization system, the TNKS1-PJ34 crystallization system has the NAD(+) donor site accessible to bulk solvent in the crystal, which allows displacement soaking. The TNKS1-PJ34 crystallization system was used to determine the structure of TNKS1 in complex with XAV939. These structures provide a basis for the start of a structure-based drug-design campaign for TNKS1.


Assuntos
Inibidores Enzimáticos/química , Compostos Heterocíclicos com 3 Anéis/química , Fenantrenos/química , Tanquirases/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Tanquirases/antagonistas & inibidores
11.
Radiology ; 261(1): 136-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813738

RESUMO

PURPOSE: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (¹77Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (¹77Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. MATERIALS AND METHODS: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@CC80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of ¹77Lu-DOTA-f-Gd3N@CC80. Survival data were evaluated by using Kaplan-Meier statistical methods. RESULTS: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@CC80 nanoplatform, which enabled longitudinal imaging. Successful coupling of ¹77Lu to the f-Gd3N@CC80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (> 2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. CONCLUSION: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe retention, biodistribution, and extended survival in an orthotopic xenograft brain tumor model.


Assuntos
Braquiterapia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Complexos de Coordenação , Fulerenos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Lutécio/uso terapêutico , Radioisótopos/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Nanotecnologia , Transplante de Neoplasias , Cintilografia
12.
Nano Lett ; 10(8): 2843-8, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698597

RESUMO

Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.


Assuntos
Fulerenos/química , Metais/química , Nanotubos de Carbono , Pontos Quânticos , Técnicas In Vitro
13.
J Am Chem Soc ; 132(14): 4980-1, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20307100

RESUMO

In this communication, we describe the successful encapsulation of (177)Lu into the endohedral metallofullerene (177)Lu(x)Lu(3-x)N@C(80) (x = 1-3) starting with (177)LuCl(3) in a modified quartz Kraschmer-Huffman electric generator. We demonstrate that the (177)Lu (beta-emitter) in this fullerene cage is not significantly released for a period of up to at least one-half-life (6.7 days). We also demonstrate that this agent can be conjugated with an interleukin-13 peptide that is designed to target an overexpressed receptor in glioblastoma multiforme tumors. This nanoparticle delivery platform provides flexibility for a wide range of radiotherapeutic and radiodiagnostic multimodal applications.


Assuntos
Fulerenos/química , Interleucina-13/química , Lutécio/química , Radioisótopos/química , Marcação por Isótopo
14.
J Med Chem ; 63(23): 14425-14447, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33140646

RESUMO

This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties. We allocated the compounds as plated subsets on a 2D grid with property based ranking in one dimension and increasing structural redundancy in the other. The learnings from the 2015 screening deck were applied to the design of a next generation in 2019. We found that using traditional leadlikeness criteria (mainly MW, clogP) reduces the hit rates of attractive chemical starting points in subset screening. Consequently, the 2019 deck relies on solubility and permeability to select preferred compounds. The 2019 design also uses NIBR's experimental assay data and inferred biological activity profiles in addition to structural diversity to define redundancy across the compound sets.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia
15.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32910655

RESUMO

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Antineoplásicos/uso terapêutico , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Macaca fascicularis , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ratos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
J Med Chem ; 62(4): 1701-1714, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30212196

RESUMO

Two decades have passed since the rule of five ushered in the concept of "drug-like" properties. Attempts to quantify, correlate, and categorize molecules based on Ro5 parameters evolved into the introduction of efficiency metrics with far reaching consequences in decision making by industry leaders and scientists seeking to discover new medicines. Examination of oral drug parameters approved before and after the original Ro5 analysis demonstrates that some parameters such as clogP and HBD remained constant while the cutoffs for parameters such as molecular weight and HBA have increased substantially over the past 20 years. The time dependent increase in the molecular weight of oral drugs during the past 20 years provides compelling evidence to disprove the hypothesis that molecular weight is a "drug-like" property. This analysis does not validate parameters that have not changed as being "drug-like" but instead calls into question the entire hypothesis that "drug-like" properties exist.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/química , Aprovação de Drogas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Farmacologia/métodos
17.
J Med Chem ; 60(6): 2215-2226, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28092155

RESUMO

Overexpression and somatic heterozygous mutations of EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), are associated with several tumor types. EZH2 inhibitor, EPZ-6438 (tazemetostat), demonstrated clinical efficacy in patients with acceptable safety profile as monotherapy. EED, another subunit of PRC2 complex, is essential for its histone methyltransferase activity through direct binding to trimethylated lysine 27 on histone 3 (H3K27Me3). Herein we disclose the discovery of a first-in-class potent, selective, and orally bioavailable EED inhibitor compound 43 (EED226). Guided by X-ray crystallography, compound 43 was discovered by fragmentation and regrowth of compound 7, a PRC2 HTS hit that directly binds EED. The ensuing scaffold hopping followed by multiparameter optimization led to the discovery of 43. Compound 43 induces robust and sustained tumor regression in EZH2MUT preclinical DLBCL model. For the first time we demonstrate that specific and direct inhibition of EED can be effective as an anticancer strategy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonas/química , Sulfonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Feminino , Haplorrinos , Histonas/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Lisina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Ratos , Sulfonas/farmacocinética , Sulfonas/uso terapêutico , Triazóis/farmacocinética , Triazóis/uso terapêutico
18.
J Med Chem ; 60(1): 415-427, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27992714

RESUMO

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Assuntos
Inibidores Enzimáticos/química , Epigênese Genética , Metiltransferases/antagonistas & inibidores , Complexo Repressor Polycomb 2/química , Regulação Alostérica , Células CACO-2 , Cromatografia Líquida , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
19.
Cancer Res ; 76(10): 2977-89, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197231

RESUMO

Alternate RNA processing of caspase-9 generates the splice variants caspase 9a (C9a) and caspase 9b (C9b). C9b lacks a domain present in C9a, revealing a tumorigenic function that drives the phenotype of non-small cell lung cancer (NSCLC) cells. In this study, we elucidated the mechanistic underpinnings of the malignant character of this splice isoform. In NSCLC cells, C9b expression correlated with activation of the canonical arm of the NF-κB pathway, a major pathway linked to the NSCLC tumorigenesis. Mechanistic investigations revealed that C9b activates this pathway via direct interaction with cellular inhibitor of apoptosis 1 (cIAP1) and subsequent induction of the E3 ligase activity of this IAP family member. The C9b:cIAP1 interaction occurred via the BIR3 domain of cIAP1 and the IAP-binding motif of C9b, but did not require proteolytic cleavage of C9b. This protein:protein interaction was essential for C9b to promote viability and malignant growth of NSCLC cells in vitro and in vivo, broadly translating to diverse NSCLC oncogenotypes. Overall, our findings identified a novel point for therapeutic invention in NSCLC that may be tractable to small-molecule inhibitors, as a new point to broadly address this widespread deadly disease. Cancer Res; 76(10); 2977-89. ©2016 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 9/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Animais , Apoptose , Western Blotting , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspase 9/genética , Proliferação de Células , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Proteínas Inibidoras de Apoptose/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , NF-kappa B/genética , Ligação Proteica , Proteólise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27347692

RESUMO

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Assuntos
Antineoplásicos/química , Piperidinas/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirazinas/química , Pirimidinas/química , Administração Oral , Regulação Alostérica , Sítio Alostérico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Feminino , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Modelos Moleculares , Transplante de Neoplasias , Piperidinas/síntese química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA