Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168852

RESUMO

The novel genetically modified probiotic Bacillus subtilis ZB423 was assessed in a 90-day repeated-dose oral toxicity study adhering to Good Laboratory Practice (GLP) and Organization for Economic Cooperation and Development (OECD) guidelines. Spray-dried spores at a concentration of 1.1E12 CFU/g were administered at doses of 130, 260, and 519 mg/kg body weight/day correlating to 1.43 × 1011, 2.86 × 1011, and 5.71 × 1011 CFU/kg/day, respectively, by oral gavage to Wistar rats for a period of 90 consecutive days. Results showed no toxicologically relevant findings for B. subtilis ZB423 from measured parameters. The no observed adverse effect level (NOAEL) of B. subtilis ZB423 is 519 mg/kg body weight/day corresponding to 5.71 × 1011 CFU/kg/day for lyophilized B. subtilis ZB423 spores under the test conditions employed.

2.
Genetics ; 206(3): 1645-1657, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495957

RESUMO

In all organisms, the majority of traits vary continuously between individuals. Explaining the genetic basis of quantitative trait variation requires comprehensively accounting for genetic and nongenetic factors as well as their interactions. The growth of microbial cells can be characterized by a lag duration, an exponential growth phase, and a stationary phase. Parameters that characterize these growth phases can vary among genotypes (phenotypic variation), environmental conditions (phenotypic plasticity), and among isogenic cells in a given environment (phenotypic variability). We used a high-throughput microscopy assay to map genetic loci determining variation in lag duration and exponential growth rate in growth rate-limiting and nonlimiting glucose concentrations, using segregants from a cross of two natural isolates of the budding yeast, Saccharomyces cerevisiae We find that some quantitative trait loci (QTL) are common between traits and environments whereas some are unique, exhibiting gene-by-environment interactions. Furthermore, whereas variation in the central tendency of growth rate or lag duration is explained by many additive loci, differences in phenotypic variability are primarily the result of genetic interactions. We used bulk segregant mapping to increase QTL resolution by performing whole-genome sequencing of complex mixtures of an advanced intercross mapping population grown in selective conditions using glucose-limited chemostats. We find that sequence variation in the high-affinity glucose transporter HXT7 contributes to variation in growth rate and lag duration. Allele replacements of the entire locus, as well as of a single polymorphic amino acid, reveal that the effect of variation in HXT7 depends on genetic, and allelic, background. Amplifications of HXT7 are frequently selected in experimental evolution in glucose-limited environments, but we find that HXT7 amplifications result in antagonistic pleiotropy that is absent in naturally occurring variants of HXT7 Our study highlights the complex nature of the genotype-to-phenotype map within and between environments.


Assuntos
Proliferação de Células/genética , Variação Genética , Fenótipo , Locos de Características Quantitativas , Alelos , Meio Ambiente , Genótipo , Proteínas de Transporte de Monossacarídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA