Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 13(1): 90, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616360

RESUMO

This study introduces a novel titanium dioxide carbon nanofiber (TiO2-CNF) support for anodic catalyst in direct methanol fuel cell. The catalytic synthesis process involves several methods, namely the sol-gel, electrospinning, and deposition methods. The synthesized electrocatalyst is compared with other three electrocatalysts with different types of support. All of these electrocatalysts differ based on a number of physical and electrochemical characteristics. Experimental results show that the TiO2-CNF support gave the highest current density at 345.64 mA mgcatalyst-1, which is equivalent to 5.54-fold that of carbon support while the power density is almost double that of the commercial electrocatalyst.

2.
Nanoscale Res Lett ; 13(1): 82, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29536289

RESUMO

The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.

3.
Nanoscale Res Lett ; 12(1): 613, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29214597

RESUMO

Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1PtRu, respectively, compared with the other samples.

4.
Nanoscale Res Lett ; 11(1): 553, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28032325

RESUMO

In this study, TiO2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA