Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202309718, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37656606

RESUMO

Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1 ; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1 H ) and a lower-lying T1 (T1 L ) can be observed, while for TPXZPhCor, T1 H -dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1 H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax ) and a luminance (Lmax ) of 3.3 % and 5167 cd m-2 , respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.

2.
Angew Chem Int Ed Engl ; 62(8): e202215522, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36480790

RESUMO

We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΦPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax ) of 8.5 % at Commission Internationale de l'Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).

3.
Chemistry ; 24(13): 3234-3240, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274097

RESUMO

A series of unsymmetrical arene-1,3-squaraine (USQ) derivatives with two, three, or four hydroxy (-OH) substituents, namely, USQ-2-OH, USQ-3-OH, or USQ-4-OH, respectively, were designed and synthesized, and the effect of the number of hydroxy groups on the optoelectronic properties of USQs were investigated. Despite the three compounds having similar UV/Vis absorption and HOMO energy levels, solution-processed bulk-heterojunction (BHJ) small-molecule organic solar cells with USQ-3-OH as electron-donor materials exhibit the highest power conversion efficiency of 6.07 %, which could be mainly attributed to the higher hole mobility and smaller phase separation. It is also noteworthy that the short-circuit current (Jsc ) of the USQ-3-OH-based device is as high as 14.95 mA cm-2 , which is the highest Jsc values reported for squaraine-based BHJ solar cells to date. The results also indicate that more -OH substituents on squaraine dyes do not necessarily lead to better photovoltaic performance.

4.
Org Lett ; 25(31): 5880-5884, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37498083

RESUMO

Bromo-functionalized B1-polycyclic aromatic hydrocarbons (PAHs) with LUMOs of less than -3.0 eV were synthesized and used in cross-couplings to form donor-acceptor materials. These materials spanned a range of S1 energies, with a number showing thermally activated delayed fluorescence and significant emission in the near-infrared region of the spectrum. These B1-PAHs represent a useful family of acceptors that can be readily synthesized and functionalized.

5.
Adv Mater ; 35(33): e2300997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140188

RESUMO

Two multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are presented and it is shown how further borylation of a deep-blue MR-TADF emitter, DIDOBNA-N, both blueshifts and narrows the emission producing a new near-UV MR-TADF emitter, MesB-DIDOBNA-N, are shown. DIDOBNA-N emits bright blue light (ΦPL = 444 nm, FWHM = 64 nm, ΦPL = 81%, τd = 23 ms, 1.5 wt% in TSPO1). The deep-blue organic light-emitting diode (OLED) based on this twisted MR-TADF compound shows a very high maximum external quantum efficiency (EQEmax ) of 15.3% for a device with CIEy of 0.073. The fused planar MR-TADF emitter, MesB-DIDOBNA-N shows efficient and narrowband near-UV emission (λPL = 402 nm, FWHM = 19 nm, ΦPL = 74.7%, τd = 133 ms, 1.5 wt% in TSPO1). The best OLED with MesB-DIDOBNA-N, doped in a co-host, shows the highest efficiency reported for a near-UV OLED at 16.2%. With a CIEy coordinate of 0.049, this device also shows the bluest EL reported for a MR-TADF OLED to date.

6.
Adv Mater ; 32(45): e2003911, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33029892

RESUMO

Organic long-persistent luminescence (OLPL) is one of the most promising methods for long-lived-emission applications. However, present room-temperature OLPL emitters are mainly based on a bimolecular exciplex system which usually needs an expensive small molecule such as 2,8-bis(diphenyl-phosphoryl)dibenzo[b,d]thiophene (PPT) as the acceptor. In this study, a new thermally activated delayed fluorescence (TADF) compound, 3-(4-(9H-carbazol-9-yl)phenyl)acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile (CzPhAP), is designed, which also shows OLPL in many well-known hosts such as PPT, 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), and poly(methyl methacrylate) (PMMA), without any exciplex formation, and its OLPL duration reaches more than 1 h at room temperature. Combining the low cost of PMMA manufacture and flexible designs of TADF molecules, pure organic, large-scale, color tunable, and low-cost room-temperature OLPL applications become possible. Moreover, it is found that the onset of the 77 K afterglow spectra from a TADF-emitter-doped film is not necessarily reliable for determining the lowest triplet state energy level. This is because in some TADF-emitter-doped films, optical excitation can generate charges (electron and holes) that can later recombine to form singlet excitons during the phosphorescence spectrum measurement. The spectrum taken in the phosphorescence time window at low temperature may consequently consist of both singlet and triplet emission.

8.
Chem Sci ; 8(2): 1259-1268, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451268

RESUMO

A novel bipolar hosting material, 11-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12,12-dimethyl-11,12-dihydroindeno[2,1-a]carbazole (DPDDC), was designed, synthesized, and characterized for green phosphorescent organic light-emitting diodes (PhOLEDs). The DPDDC exhibits excellent hole and electron transport properties, superior thermal stability, a high glass-transition temperature and a small singlet-triplet energy gap for efficient reverse intersystem crossing from triplet to singlet, reducing the triplet density of the host for PhOLEDs. The electrophosphorescence properties of the devices using DPDDC as the host and three green phosphorescent iridium(iii) complexes, bis(2-(4-tolyl)pyridinato-N,C2')iridium(iii) acetylacetonate, bis(2-phenylpyridine)iridium(iii) acetylacetonate, and bis(4-methyl-2,5-diphenylpyridine)iridium(iii) acetylacetonate [(mdppy)2Iracac] as the emitter were investigated. The green PhOLED with 5 wt% (mdppy)2Iracac presents an excellent performance, including a high power efficiency of 92.3 lm W-1, high external quantum efficiency of 23.6%, current efficiency roll-off as low as 5.5% at 5000 cd m-2 and a twentyfold lifetime improvement (time to 90% of the 5000 cd m-2 initial luminance) over the reference electrophosphorescent device.

9.
Nanoscale Res Lett ; 12(1): 602, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29168002

RESUMO

This paper demonstrates the lasing and transport properties of a green conjugated polymer, namely POFP. High photoluminescence yields and excellent electron transport of POFP film make it promising for gain media. Low threshold value of 4.0 µJ/cm2 for amplified spontaneous emissions under a pulsed Nd:YAG laser at 355 nm was obtained, as well as a high Q-factor of 159. An inverted waveguide microcavity scheme has been developed to fabricate diode-pumped organic solid lasers (OSLs) using POFP. Gain narrowing with significant radiance increase was observed in the devices, giving evidence of the interference enhancement induced by microcavity and the lasing properties of POFP.

10.
Nanoscale ; 9(38): 14602-14611, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28936529

RESUMO

Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS2) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS2-based IOLEDs can significantly improve electron-injecting capacity. For the MoS2-based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m-2, which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS2 nanopillar arrays by thermal evaporation. Notably, MoS2-based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A-1 with the luminance increasing from 100 to 5000 cd m-2. In addition, we observed that the initial brightness of 500 cd m-2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA