Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404171, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185810

RESUMO

All-solid-state lithium sulfide-based batteries (ASSLSBs) have drawn much attention due to their intrinsic safety and excellent performance in overcoming the polysulfide shuttle effect. However, the sluggish kinetics of Li2S cathode severely impede commercial utilization. Here, a Cu+, I- co-doping strategy is employed to activate the kinetics of Li2S to construct high-performance ASSLSBs. The electronic conductivity and Li-ion diffusion coefficient of the co-doped Li2S are increased by five and two orders of magnitude, respectively. Cu+ as a redox medium greatly improves the reaction kinetics, which is supported by ex situ X-ray photoelectron spectroscopy. Density functional theory calculation (DFT) shows that Cu+, I- co-doping reduces the Li-ions diffusion energy barrier. The co-doped Li2S exhibits a remarkable improvement in capacity (1165.23 mAh g-1 (6.65 times that of pristine Li2S) at 0.02 C and 592.75 mAh g-1 at 2 C), and excellent cycling stability (84.58% capacity retention after 6200 cycles at 2 C) at room temperature. Moreover, an ASSLSB, fabricated with a lithium-free (Si─C) anode, obtains a high specific capacity of 1082.7 mAh g-1 at 0.05 C and 97% capacity retention after 400 cycles at 0.5 C. This work provides a broad prospect for the development of ASSLSBs with practical energy density exceeding that of traditional lithium-ion batteries.

2.
Nano Lett ; 22(7): 2817-2825, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35333055

RESUMO

Wearable pressure sensors are crucial for real-time monitoring of human activities and biomimetic robot status. Here, the ultrasensitive pressure sensor sponge is prepared by a facile method, realizing ultrasensitive pressure sensing for wearable health monitoring. Since the liquid metal in the sponge-skeleton structure under pressure is conducive to adjust the contact area with nitrogen-doped graphene nanosheets and thus facilitates the charge transfer at the interface, such sensors exhibit a fast response and recovery speed with the response/recovery time 0.41/0.12 s and a comprehensive response range with a sensitivity of up to 476 KPa-1. Notably, the liquid metal-based spongy pressure sensor can accurately monitor the human body's pulse, the pressure on the skin, throat swallowing, and other activities in real time, demonstrating a broad application prospect. Those results provide a convenient and low-cost way to fabricate easily perceptible pressure sensors, expanded the application potential of liquid metal-based composites for future electronic skin development.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Humanos , Metais , Monitorização Fisiológica , Nitrogênio , Pressão
3.
Angew Chem Int Ed Engl ; 61(38): e202208238, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35879858

RESUMO

Carbon supported single-atom catalysts with metal-Nx configuration are considered as one of the most efficient catalysts for the oxygen reduction reaction (ORR). However, most of the metal-Nx active sites are composed by pyridinic N at the defect locations of graphene-like supports. Here, we employ graphdiyne (GDY) as a new carbon substrate to synthesize an iron (Fe) single atom catalyst (Fe-N-GDY), showing excellent catalytic performance. Benefitting from the abundant acetylenic bonds in GDY, sp-N anchored metal atoms are created without forming defects. The sp-N and OH ligands regulate the electronic structure of Fe atoms and optimize the adsorption energy of ORR intermediates on the active sites by reducing the electron local density of Fe atoms, which accelerates the reaction kinetics and promotes the ORR activity of Fe-N-GDY. Furthermore, the practical application of Fe-N-GDY is corroborated by its high power density and long-term performance via assembling a zinc-air battery.

4.
ACS Appl Mater Interfaces ; 16(15): 18843-18854, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586920

RESUMO

Sulfide solid-state electrolytes have garnered considerable attention owing to their notable ionic conductivity and mechanical properties. However, achieving an electrolyte characterized by both high ionic conductivity and a stable interface between the electrode and electrolyte remains challenging, impeding its widespread application. In this work, we present a novel sulfide solid-state electrolyte, Li3.04P0.96Zn0.04S3.92F0.08, prepared through a solid-phase reaction, and explore its usage in all-solid-state lithium sulfur batteries (ASSLSBs). The findings reveal that the Zn, F co-doped solid-state electrolyte exhibits an ionic conductivity of 1.23 × 10-3 S cm-1 and a low activation energy (Ea) of 9.8 kJ mol-1 at room temperature, illustrating the aliovalent co-doping's facilitation of Li-ion migration. Furthermore, benefiting from the formation of a LiF-rich interfacial layer between the electrolyte and the Li metal anode, the Li/Li3.04P0.96Zn0.04S3.92F0.08/Li symmetrical cell exhibits critical current densities (CCDs) of up to 1 mA cm-2 and maintains excellent cycling stability. Finally, the assembled ASSLSBs exhibit an initial discharge capacity of 1295.7 mAh g-1 at a rate of 0.05 C and at room temperature. The cell maintains a capacity retention of 70.5% for more than 600 cycles at a high rate of 2 C, representing a substantial improvement compared to the cell with Li3PS4. This work provides a new idea for the design of solid-state electrolytes and ASSLSBs.

5.
Chem Commun (Camb) ; 60(44): 5703-5706, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38738578

RESUMO

A collaborative manipulation strategy of proper heat treatment and self-customized hydrofluoroether-based electrolyte design has been proposed for boosting the sodium-ion storage kinetics of Prussian white cathodes. Improved monoclinic phase stability and electrolyte-cathode compatibility are responsible for an impressive discharge capacity of 148.4 mA h g-1 and excellent electrode reversibility.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36901568

RESUMO

Ceramic membrane has emerged as a promising material to address the membrane fouling issue in membrane bioreactors (MBR). In order to optimize the structural property of ceramic membrane, four corundum ceramic membranes with the mean pore size of 0.50, 0.63, 0.80, and 1.02 µm were prepared, which were designated as C5, C7, C13, and C20, respectively. Long-term MBR experiments showed that the C7 membrane with medium pore size experienced the lowest trans-membrane pressure development rate. Both the decrease and increase of membrane pore size would lead to more severe membrane fouling in the MBR. It was also interesting that with the increase of membrane pore size, the relative proportion of cake layer resistance in total fouling resistance was gradually increased. The content of dissolved organic foulants (i.e., protein, polysaccharide and DOC) on the surface of C7 was quantified as the lowest among the different ceramic membranes. Microbial community analysis also revealed the C7 had a lower relative abundance of membrane fouling associated bacteria in its cake layer. The results clearly demonstrated that ceramic membrane fouling in MBR could be effectively alleviated through optimizing the membrane pore size, which was a key structural factor for preparation of ceramic membrane.


Assuntos
Membranas Artificiais , Microbiota , Cerâmica , Reatores Biológicos/microbiologia , Bactérias , Esgotos
7.
ACS Appl Mater Interfaces ; 15(34): 40496-40507, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594748

RESUMO

Due to the high energy density, high safety, and low cost of sulfur, all-solid-state lithium-sulfur batteries (ASSLSBs) are considered one of the most promising next-generation energy storage devices. Nevertheless, the insufficient interfacial contact between solid electrolytes (SEs) and the active material of sulfur leads to inadequate electronic and ionic conduction, which increases interfacial resistance and capacity decay. In this paper, commercial carbon nanotubes (CNTs) are activated to form porous-CNTs (P-CNTs), which are used as sulfur-bearing matrix, forming S@P-CNTs-based composite cathodes for ASSLSBs. Compared with CNTs, P-CNTs possess a larger specific surface area and more oxygen-containing groups, providing enhanced interfacial contact and stability between S@P-CNTs and Li6PS5Cl SE, which are confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. Moreover, P-CNTs can form a 3D conductive network in the composite cathodes, facilitating the migration of electrons and the diffusion of ions, as well as improving the utilization of sulfur. As a result, the S@P-CNTs-based ASSLSBs display excellent electrochemical performances, especially rarely reported ultralong lifespan, which deliver a capacity of 1099.2 mA h g-1 at a current density of 1.34 mA cm-2, and remarkably maintain 70.4% of the initial capacity over 1400 cycles.

8.
ChemSusChem ; 12(1): 173-178, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30421574

RESUMO

On account of the high-cost of platinum, researchers are working to develop a new catalyst that is cheaper and has a catalytic effect equivalent to platinum. Herein, owing to the unique acetylenic bonds in graphdiyne, iron, nitrogen co-doped graphdiyne (Fe-N-GDY) is a promising nonprecious metal catalyst, which has been developed with just a small amount of iron precursor with the plan to substitute it for Pt-based catalysts. The as-synthesized Fe-N-GDY composited catalyst shows excellent catalytic performance with the onset potential of 0.94 V versus reversible hydrogen electrode and limited current density of 5.4 mA cm-2 . Moreover, it shows excellent resistance to methanol poisoning and stability in both acidic and alkaline electrolytes, which makes potentially applicable in the oxygen reduction reaction field.

9.
Nat Commun ; 9(1): 3376, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139938

RESUMO

Doping with pyridinic nitrogen atoms is known as an effective strategy to improve the activity of carbon-based catalysts for the oxygen reduction reaction. However, pyridinic nitrogen atoms prefer to occupy at the edge or defect sites of carbon materials. Here, a carbon framework named as hydrogen-substituted graphdiyne provides a suitable carbon matrix for pyridinic nitrogen doping. In hydrogen-substituted graphdiyne, three of the carbon atoms in a benzene ring are bonded to hydrogen and serve as active sites, like the edge or defect positions of conventional carbon materials, on which pyridinic nitrogen can be selectively doped. The as-synthesized pyridinic nitrogen-doped hydrogen-substituted graphdiyne shows much better electrocatalytic performance for the oxygen reduction reaction than that of the commercial platinum-based catalyst in alkaline media and comparable activity in acidic media. Density functional theory calculations demonstrate that the pyridinic nitrogen-doped hydrogen-substituted graphdiyne is more effective than pyridinic nitrogen-doped graphene for oxygen reduction.

10.
ACS Appl Mater Interfaces ; 9(35): 29744-29752, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28812362

RESUMO

Metal-free catalysts for oxygen reduction reaction (ORR) are the desired materials for low-cost proton exchange membrane fuel cells. Graphdiyne (GDY), a novel type of two-dimensional carbon allotrope, is featured by its sp- and sp2-hybridized carbon atoms, different from the other existing carbon materials. Thus, nitrogen (N) can be doped in new styles by substituting sp-hybridized carbon atoms, effective for ORR, which has been displayed in this study using both experimental and theoretical technologies. The N-doped GDY was synthesized with pyridine and NH3 as N sources successively, expressing an electrocatalytic activity at a potential above 0.8 V similar to that of commercial Pt/C for ORR in alkaline solution and higher stability and better methanol tolerance than those of Pt/C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA