Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glob Chang Biol ; 30(1): e17148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273513

RESUMO

Phenological responses to climate change frequently vary among trophic levels, which can result in increasing asynchrony between the peak energy requirements of consumers and the availability of resources. Migratory birds use multiple habitats with seasonal food resources along migration flyways. Spatially heterogeneous climate change could cause the phenology of food availability along the migration flyway to become desynchronized. Such heterogeneous shifts in food phenology could pose a challenge to migratory birds by reducing their opportunity for food availability along the migration path and consequently influencing their survival and reproduction. We develop a novel graph-based approach to quantify this problem and deploy it to evaluate the condition of the heterogeneous shifts in vegetation phenology for 16 migratory herbivorous waterfowl species in Asia. We show that climate change-induced heterogeneous shifts in vegetation phenology could cause a 12% loss of migration network integrity on average across all study species. Species that winter at relatively lower latitudes are subjected to a higher loss of integrity in their migration network. These findings highlight the susceptibility of migratory species to climate change. Our proposed methodological framework could be applied to migratory species in general to yield an accurate assessment of the exposure under climate change and help to identify actions for biodiversity conservation in the face of climate-related risks.


Assuntos
Migração Animal , Mudança Climática , Animais , Aves/fisiologia , Ecossistema , Estações do Ano
2.
BMC Public Health ; 22(1): 1551, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971087

RESUMO

BACKGROUND: A stronger spatial clustering of cancer burden indicates stronger environmental and human behavioral effects. However, which common cancers in China have stronger spatial clustering and knowledge gaps regarding the environmental and human behavioral effects have yet to be investigated. This study aimed to compare the spatial clustering degree and hotspot patterns of 11 common cancers in mainland China and discuss the potential environmental and behavioral risks underlying the patterns. METHODS: Cancer incidence data recorded at 339 registries in 2014 was obtained from the "China Cancer Registry Annual Report 2017". We calculated the spatial clustering degree of the common cancers using the global Moran's Index and identified the hotspot patterns using the hotspot analysis. RESULTS: We found that esophagus, stomach and liver cancer have a significantly higher spatial clustering degree ([Formula: see text]) than others. When by sex, female esophagus, male stomach, male esophagus, male liver and female lung cancer had significantly higher spatial clustering degree ([Formula: see text]). The spatial clustering degree of male liver was significantly higher than that of female liver cancer ([Formula: see text]), whereas the spatial clustering degree of female lung was significantly higher than that of male lung cancer ([Formula: see text]). The high-risk areas of esophagus and stomach cancer were mainly in North China, Huai River Basin, Yangtze River Delta and Shaanxi Province. The hotspots for liver and male liver cancer were mainly in Southeast China and south Hunan. Hotspots of female lung cancer were mainly located in the Pearl River Delta, Shandong, North and Northeast China. The Yangtze River Delta and the Pearl River Delta were high-risk areas for multiple cancers. CONCLUSIONS: The top highly clustered cancer types in mainland China included esophagus, stomach and liver cancer and, by sex, female esophagus, male stomach, male esophagus, male liver and female lung cancer. Among them, knowledge of their spatial patterns and environmental and behavioral risk factors is generally limited. Potential factors such as unhealthy diets, water pollution and climate factors have been suggested, and further investigation and validation are urgently needed, particularly for male liver cancer. This study identified the knowledge gap in understanding the spatial pattern of cancer burdens in China and offered insights into targeted cancer monitoring and control.


Assuntos
Neoplasias Hepáticas , Neoplasias Pulmonares , China/epidemiologia , Feminino , Humanos , Incidência , Neoplasias Hepáticas/epidemiologia , Masculino , Rios
3.
J Environ Manage ; 324: 116330, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208513

RESUMO

Global biodiversity is declining at an unprecedented rate, and the Post-2020 Global Biodiversity Framework requires each country to fulfill the conservation targets in biodiversity-inclusive spatial planning. Croplands provide habitat and food for many species, making them crucial for biodiversity conservation in addition to food production. Assessing conservation priorities in cropland is a prerequisite to allocate conservation resources and plan actions for better conservation outcomes. Yet quantitative methods to assess cropland conservation priority for biodiversity conservation at a national scale are still lacking. We proposed a framework for identifying the conservation priority in cropland for bird species at a national scale and applied the framework in China. We calculated the suitable habitat for each species and used a complementarity-based approach to designate the irreplaceable conservation priority areas considering richness, threatened level, and conservation percentage targets. We identified cropland taking up 6.76% of China's land area as a bird conservation priority, partially covering the suitable habitat of all the study species. By analyzing the landscape pattern of the priority areas and species' foraging traits, we provided policy-making suggestions according to area-specific characteristics. This framework can be used to identify priority areas for large-scale biodiversity conservation for different countries.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Aves , Produtos Agrícolas
4.
J Theor Biol ; 502: 110315, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387368

RESUMO

Migration can influence dynamics of pathogen-host interactions. However, it is not clearly known how migration pattern, in terms of the configuration of the migration network and the synchrony of migration, affects infection prevalence. We therefore applied a discrete-time SIR model, integrating environmental transmission and migration, to various migration networks, including networks with serial, parallel, or both serial and parallel stopover sites, and with various levels of migration synchrony. We applied the model to the infection of avian influenza virus in a migratory geese population. In a network with only serial stopover sites, increasing the number of stopover sites reduced infection prevalence, because with every new stopover site, the amount of virus in the environment was lower than that in the previous stopover site, thereby reducing the exposure of the migratory population. In a network with parallel stopover sites, both increasing the number and earlier appearance of the stopover sites led to an earlier peak of infection prevalence in the migratory population, because the migratory population is exposed to larger total amount of virus in the environment, speeding-up the infection accumulation. Furthermore, higher migration synchrony reduced the average number of cumulative infection, because the majority of the population can fly to a new stopover site where the amount of virus is still relatively low and has not been increased due to virus shedding of infected birds. Our simulations indicate that a migration pattern with multiple serial stopover sites and with highly synchronized migration reduces the infection prevalence.


Assuntos
Gansos , Vírus da Influenza A , Migração Animal , Animais , Prevalência , Estações do Ano
5.
Conserv Biol ; 34(2): 416-426, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31268188

RESUMO

Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration-network connectivity and the impacts of site loss are not completely understood. We used GPS tracking data on 4 bird species in the Asian flyways to construct migration networks and proposed a framework for assessing network connectivity for migratory species. We used a node-removal process to identify stopover sites with the highest impact on connectivity. In general, migration networks with fewer stopover sites were more vulnerable to habitat loss. Node removal in order from the highest to lowest degree of habitat loss yielded an increase of network resistance similar to random removal. In contrast, resistance increased more rapidly when removing nodes in order from the highest to lowest betweenness value (quantified by the number of shortest paths passing through the specific node). We quantified the risk of migration network collapse and identified crucial sites by first selecting sites with large contributions to network connectivity and then identifying which of those sites were likely to be removed from the network (i.e., sites with habitat loss). Among these crucial sites, 42% were not designated as protected areas. Setting priorities for site protection should account for a site's position in the migration network, rather than only site-specific characteristics. Our framework for assessing migration-network connectivity enables site prioritization for conservation of migratory species.


Un Enfoque de Redes para Priorizar los Esfuerzos de Conservación para las Aves Migratorias Resumen La pérdida del hábitat puede disparar el colapso de las redes de migración al aislar los sitios de reproducción de las aves migratorias de aquellos sitios que no se usan para la reproducción. En teoría, la pérdida del hábitat puede tener impactos muy diferentes dependiendo de la importancia del sitio dentro del corredor migratorio. Sin embargo, la conectividad entre las redes de migración y los impactos de la pérdida de los sitios no están del todo comprendidos. Usamos los datos de seguimiento por GPS de cuatro especies de aves en las rutas de vuelo de Asia para construir redes de migración y propusimos un marco de trabajo para evaluar la conectividad de las redes en las especies migratorias. Usamos un proceso de extracción de nodos para identificar los sitios de escala con el mayor impacto sobre la conectividad. En general, las redes de migración con menos sitios de escala fueron más vulnerables a la pérdida del hábitat. La extracción de nodos en orden del grado más alto al más bajo resultó en un incremento de resistencia de la red similar a la extracción al azar. Al contrario, la resistencia incrementó más rápidamente cuando la extracción de los nodos fue en orden del más alto al más bajo valor de intermediación (cuantificado por el número de caminos más cortos que pasan por un nodo específico). Cuantificamos el riesgo de colapso de la red de migración e identificamos sitios cruciales al seleccionar primero los sitios con mayores contribuciones a la conectividad de la red y después identificar cuáles de esos sitios tenían probabilidad de ser removidos de la red (es decir, sitios con pérdida de hábitat). Entre estos sitios cruciales, el 42% no estaban designados como áreas protegidas. El establecimiento de prioridades para la protección de un sitio debería considerar la posición del sitio dentro de la red de migración, en lugar de sólo considerar las características específicas del sitio. Nuestro marco de trabajo para la evaluación de la conectividad de la red de migración permite la priorización de sitios para la conservación de las especies migratorias.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Animais , Aves , Cruzamento , Ecossistema
6.
Ecol Appl ; 29(7): e01960, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237968

RESUMO

Migratory birds rely on a habitat network along their migration routes by temporarily occupying stopover sites between breeding and non-breeding grounds. Removal or degradation of stopover sites in a network might impede movement and thereby reduce migration success and survival. The extent to which the breakdown of migration networks, due to changes in land use, impacts the population sizes of migratory birds is poorly understood. We measured the functional connectivity of migration networks of waterfowl species that migrate over the East Asian-Australasian Flyway from 1992 to 2015. We analysed the relationship between changes in non-breeding population sizes and changes in functional connectivity, while taking into account other commonly considered species traits, using a phylogenetic linear mixed model. We found that population sizes significantly declined with a reduction in the functional connectivity of migration networks; no other variables were important. We conclude that the current decrease in functional connectivity, due to habitat loss and degradation in migration networks, can negatively and crucially impact population sizes of migratory birds. Our findings provide new insights into the underlying mechanisms that affect population trends of migratory birds under environmental changes. Establishment of international agreements leading to the creation of systematic conservation networks associated with migratory species' distributions and stopover sites may safeguard migratory bird populations.


Assuntos
Migração Animal , Aves , Animais , Ecossistema , Filogenia , Dinâmica Populacional
7.
J Anim Ecol ; 88(7): 1044-1053, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002194

RESUMO

Studies on the highly pathogenic avian influenza (HPAI) H5N1 suggest that wild bird migration may facilitate its long-distance spread, yet the role of wild bird community composition in its transmission risk remains poorly understood. Furthermore, most studies on the diversity-disease relationship focused on host species diversity without considering hosts' phylogenetic relationships, which may lead to rejecting a species diversity effect when the community has host species that are only distantly related. Here, we explored the influence of waterbird community composition for determining HPAI H5N1 occurrence in wild birds in a continental-scale study across Europe. In particular, we tested the diversity-disease relationship using both host species diversity and host phylogenetic diversity. Our results provide the first demonstration that host community composition-compared with previously identified environmental risk factors-can also effectively explain the spatial pattern of H5N1 occurrence in wild birds. We further show that communities with more higher risk host species and more closely related species have a higher risk of H5N1 outbreaks. Thus, both host species diversity and community phylogenetic structure, in addition to environmental factors, jointly influence H5N1 occurrence. Our work not only extends the current theory on the diversity-disease relationship, but also has important implications for future monitoring of H5N1 and other HPAI subtypes.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Animais Selvagens , Aves , Surtos de Doenças , Europa (Continente) , Filogenia
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(6): 1213-8, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24645599

RESUMO

MicroRNA (miRNA) is a family of endogenous single-stranded RNA about 22 nucleotides in length. Through targeting 3' UTR of message RNA (mRNA), they play important roles in post-transcriptional regulatory functions. For further research of miRNA function, the identification of more miRNA positive targets is needed urgently. Aiming at the high-dimensional small sample data sets in miRNA target prediction, an algorithm of eliminating redundant features is proposed based on v-SVM in this paper, and classification and features selection are also fused. The algorithm of eliminating redundant features optimizes the combination of features, and then constructs the best features combination which can represent miRNA and targets interaction model. The prior parameter v (0 < u < or = 1) controls the compression proportion of data set and selects more distinguishing support vectors. Finally, the classifier model of miRNA target prediction is built. The unbiased assessment of the classifier is achieved with a completely independent test dataset. Experiment results indicated that in both classification recognition and generalization performance of miRNA targets predicition, this model was superior to the present machine learning algorithms such as miTarget, NBmiRTar and TargetMiner, etc.


Assuntos
MicroRNAs , Máquina de Vetores de Suporte , Modelos Teóricos
10.
Sci Data ; 8(1): 191, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315912

RESUMO

Offshore wind farms are widely adopted by coastal countries to obtain clean and green energy; their environmental impact has gained an increasing amount of attention. Although offshore wind farm datasets are commercially available via energy industries, records of the exact spatial distribution of individual wind turbines and their construction trajectories are rather incomplete, especially at the global level. Here, we construct a global remote sensing-based offshore wind turbine (OWT) database derived from Sentinel-1 synthetic aperture radar (SAR) time-series images from 2015 to 2019. We developed a percentile-based yearly SAR image collection reduction and autoadaptive threshold algorithm in the Google Earth Engine platform to identify the spatiotemporal distribution of global OWTs. By 2019, 6,924 wind turbines were constructed in 14 coastal nations. An algorithm performance analysis and validation were performed, and the extraction accuracies exceeded 99% using an independent validation dataset. This dataset could further our understanding of the environmental impact of OWTs and support effective marine spatial planning for sustainable development.

11.
Geospat Health ; 16(1)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34000793

RESUMO

Long-distance migrations influence the dynamics of hostpathogen interactions and understanding the role of migratory waterfowl in the spread of the highly pathogenic avian influenza viruses (HPAIV) is important. While wild geese have been associated with outbreak events, disease ecology of closely related species has not been studied to the same extent. The swan goose (Anser cygnoides) and the bar-headed goose (Anser indicus) are congeneric species with distinctly different HPAIV infection records; the former with few and the latter with numerous records. We compared movements of these species, as well as the more distantly related whooper swan (Cygnus cygnus) through their annual migratory cycle to better understand exposure to HPAIV events and how this compares within and between congeneric and noncongeneric species. In spite of their record of fewer infections, swan geese were more likely to come in contact with disease outbreaks than bar-headed geese. We propose two possible explanations: i) frequent prolonged contact with domestic ducks increases innate immunity in swan geese, and/or ii) the stress of high-elevation migration reduces immunity of bar-headed geese. Continued efforts to improve our understanding of species-level pathogen response is critical to assessing disease transmission risk.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Surtos de Doenças , Gansos , Influenza Aviária/epidemiologia
12.
Mov Ecol ; 8: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832090

RESUMO

BACKGROUND: While goose populations worldwide benefit from food provided by farmland, China's threatened wintering goose populations have failed to capitalize on farmland. It has been proposed that, due to an exceptionally intense human pressure on Chinese farmland, geese cannot exploit farmland in their wintering sites and hence are confined to their deteriorating natural habitat. If this were true, locally decreasing this human pressure on farmland 'refuges' would represent a promising conservation measure. METHODS: We investigate habitat use of two declining migratory goose species in their core wintering (Yangtze River Floodplain) and stopover (Northeast China Plain) regions, compare the human pressure level at both regions, and adopt a mixed-effect resource selection function model to test how human pressure, food resource type (farmland or wetland/grass), distance to roosts, and their interaction terms influence the utilization of food resources for each species and region. To this aim we use satellite tracking of 28 tundra bean geese Anser serrirostris and 55 greater white-fronted geese A. albifrons, a newly produced 30 m land cover map, and the terrestrial human footprint map. RESULTS: Geese use farmland intensively at their stopover site, but hardly at their wintering site, though both regions have farmland available at a similar proportion. The human pressure on both farmland and wetland/grass is significantly lower at the stopover region compared to the wintering region. At both sites, the two goose species actively select for farmland and/or wetland/grass with a relatively low human pressure, positioned relatively close to their roosting sites. CONCLUSIONS: Our findings suggest that if human pressure were to decrease in the farmlands close to the roost, China's wintering geese could benefit from farmland. We recommend setting aside farmland near roosting sites that already experiences a relatively low human pressure as goose refuges, and adopt measures to further reduce human pressure and increase food quality and quantity, to help counter the decline of China's wintering goose populations. Our study has important conservation implications and offers a practical measure for migratory waterfowl conservation in areas of high human-wildlife conflict.

13.
Ecol Evol ; 8(12): 6280-6289, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988414

RESUMO

East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white-fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far-out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring-staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird-human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.

14.
Integr Zool ; 12(4): 303-317, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27992108

RESUMO

Temperature is a critical factor influencing avian phenology, due to its direct impact on food and water availability. Most previous studies have focused on the timing of spring migration and the arrival of birds at breeding grounds along the European and American flyways; little is known about migration ecology at the wintering sites along the Asian flyways. Using linear regression models, this study investigates how local temperature variation and EI Niño Southern Oscillation (ENSO) influences the arrival and departure timing of 9 waterbird species breeding in Mongolia or Siberia and overwintering in Poyang, China from 2002 to 2013. Birds mainly arrive at Poyang in October and depart for their breeding sites in March. Out of the 9 species, 6 show a strong negative relationship between departure time and overwintering temperature in Poyang. Departure dates also show a negative association with overwintering ENSO and March ENSO for two species. Both local and large-scale climate indices show no influence on the arrival timing of waterbirds. We suggest that birds react to the annual variation of overwintering temperature: an earlier departure of waterbirds is facilitated by a warmer overwintering period and vice versa. The long-term accumulated temperature effect is more pronounced than ENSO and the short-term local temperature effect. Our findings could help quantify the potential impact of global warming on waterbirds.


Assuntos
Migração Animal , Aves , El Niño Oscilação Sul , Animais , China , Estações do Ano , Sibéria , Temperatura
15.
Artigo em Inglês | MEDLINE | ID: mdl-28708077

RESUMO

Bacillary dysentery has long been a considerable health problem in southwest China, however, the quantitative relationship between anthropogenic and physical environmental factors and the disease is not fully understand. It is also not clear where exactly the bacillary dysentery risk is potentially high. Based on the result of hotspot analysis, we generated training samples to build a spatial distribution model. Univariate analyses, autocorrelation and multi-collinearity examinations and stepwise selection were then applied to screen the potential causative factors. Multiple logistic regressions were finally applied to quantify the effects of key factors. A bootstrapping strategy was adopted while fitting models. The model was evaluated by area under the receiver operating characteristic curve (AUC), Kappa and independent validation samples. Hotspot counties were mainly mountainous lands in southwest China. Higher risk of bacillary dysentery was found associated with underdeveloped socio-economy, proximity to farmland or water bodies, higher environmental temperature, medium relative humidity and the distribution of the Tibeto-Burman ethnicity. A predictive risk map with high accuracy (88.19%) was generated. The high-risk areas are mainly located in the mountainous lands where the Tibeto-Burman people live, especially in the basins, river valleys or other flat places in the mountains with relatively lower elevation and a warmer climate. In the high-risk areas predicted by this study, improving the economic development, investment in health care and the construction of infrastructures for safe water supply, waste treatment and sewage disposal, and improving health related education could reduce the disease risk.


Assuntos
Disenteria Bacilar/epidemiologia , Meio Ambiente , Fatores Socioeconômicos , China/epidemiologia , Disenteria Bacilar/microbiologia , Humanos , Incidência , Fatores de Risco
16.
Ecol Evol ; 7(23): 10440-10450, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238566

RESUMO

Extensive ephemeral wetlands at Poyang Lake, created by dramatic seasonal changes in water level, constitute the main wintering site for migratory Anatidae in China. Reductions in wetland area during the last 15 years have led to proposals to build a Poyang Dam to retain high winter water levels within the lake. Changing the natural hydrological system will affect waterbirds dependent on water level changes for food availability and accessibility. We tracked two goose species with different feeding behaviors (greater white-fronted geese Anser albifrons [grazing species] and swan geese Anser cygnoides [tuber-feeding species]) during two winters with contrasting water levels (continuous recession in 2015; sustained high water in 2016, similar to those predicted post-Poyang Dam), investigating the effects of water level change on their habitat selection based on vegetation and elevation. In 2015, white-fronted geese extensively exploited sequentially created mudflats, feeding on short nutritious graminoid swards, while swan geese excavated substrates along the water edge for tubers. This critical dynamic ecotone successively exposes subaquatic food and supports early-stage graminoid growth during water level recession. During sustained high water levels in 2016, both species selected mudflats, but also to a greater degree of habitats with longer established seasonal graminoid swards because access to tubers and new graminoid growth was restricted under high-water conditions. Longer established graminoid swards offer less energetically profitable forage for both species. Substantial reduction in suitable habitat and confinement to less profitable forage by higher water levels is likely to reduce the ability of geese to accumulate sufficient fat stores for migration, with potential carryover effects on subsequent survival and reproduction. Our results suggest that high water levels in Poyang Lake should be retained during summer, but permitted to gradually recede, exposing new areas throughout winter to provide access for waterbirds from all feeding guilds.

17.
PLoS One ; 12(5): e0177790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542340

RESUMO

Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis), Barnacle goose (Branta leucopsis) and Greater white-fronted goose (Anser albifrons), from their breeding grounds, spring stopover sites, and wintering grounds. We tested if the geese were infected with low pathogenic avian influenza virus outside of their wintering grounds, and analysed the spatial and temporal patterns of infection prevalence on their wintering grounds. Our results show that geese were not infected before their arrival on wintering grounds. Barnacle geese and Greater white-fronted geese had low prevalence of infection just after their arrival on wintering grounds in the Netherlands, but the prevalence increased in successive months, and peaked after December. This suggests that migratory geese are exposed to the virus after their arrival on wintering grounds, indicating that migratory geese might not disperse low pathogenic avian influenza virus during autumn migration.


Assuntos
Migração Animal , Cruzamento , Gansos/fisiologia , Gansos/virologia , Vírus da Influenza A/fisiologia , Estações do Ano , Animais , Influenza Aviária/transmissão , Influenza Aviária/virologia
18.
Int J Environ Res Public Health ; 13(2): 164, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26828503

RESUMO

Although the incidence of bacillary dysentery in China has been declining progressively, a considerable disease burden still exists. Few studies have analyzed bacillary dysentery across China and knowledge gaps still exist in the aspects of geographic distribution and ecological drivers, seasonality and its association with meteorological factors, urban-rural disparity, prevalence and distribution of Shigella species. Here, we performed nationwide analyses to fill the above gaps. Geographically, we found that incidence increased along an east-west gradient which was inversely related to the economic conditions of China. Two large endemically high-risk regions in western China and their ecological drivers were identified for the first time. We characterized seasonality of bacillary dysentery incidence and assessed its association with meteorological factors, and saw that it exhibits north-south differences in peak duration, relative amplitude and key meteorological factors. Urban and rural incidences among China's cities were compared, and disparity associated with urbanization level was invariant in most cities. Balanced decrease of urban and rural incidence was observed for all provinces except Hunan. S. flexneri and S. sonnei were identified as major causative species. Increasing prevalence of S. sonnei and geographic distribution of Shigella species were associated with economic status. Findings and inferences from this study draw broader pictures of bacillary dysentery in mainland China and could provide useful information for better interventions and public health planning.


Assuntos
Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Estações do Ano , Shigella/patogenicidade , China/epidemiologia , Humanos , Incidência , Conceitos Meteorológicos , Prevalência , Saúde Pública , Fatores de Risco , População Rural/estatística & dados numéricos , Sorotipagem , Shigella flexneri/patogenicidade , Shigella sonnei/patogenicidade , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos
19.
Sci Rep ; 6: 30262, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507581

RESUMO

The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.


Assuntos
Migração Animal/fisiologia , Surtos de Doenças , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Zoonoses/epidemiologia , Animais , Anseriformes/virologia , Europa (Continente)/epidemiologia , Ásia Oriental/epidemiologia , Voo Animal/fisiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Estações do Ano , Zoonoses/transmissão , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA