Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(2): 600-614, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849064

RESUMO

PURPOSE: To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS: Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS: The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION: Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.


Assuntos
Imageamento por Ressonância Magnética , Técnicas de Imagem de Sincronização Respiratória , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Movimento (Física) , Aceleração , Técnicas de Imagem de Sincronização Respiratória/métodos , Processamento de Imagem Assistida por Computador/métodos , Respiração
2.
Phys Med Biol ; 68(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37619588

RESUMO

Objective. To develop real-time 4D MRI using MR signature matching (MRSIGMA) for volumetric motion imaging in patients with pancreatic cancer on a 1.5T MR-Linac system.Approach. Two consecutive MRI scans with 3D golden-angle radial stack-of-stars acquisitions were performed on ten patients with inoperable pancreatic cancer. The complete first scan (905 angles) was used to compute a 4D motion dictionary including ten pairs of 3D motion images and signatures. The second scan was used for real-time imaging, where each angle (275 ms) was processed separately to match it to one of the dictionary entries. The complete second scan was also used to compute a 4D reference to assess motion tracking performance.Dicecoefficients of the gross tumor volume (GTV) and two organs-at-risk (duodenum-stomach and small bowel) were calculated between signature matching and reference. In addition, volume changes, displacements, center of mass shifts, andDicescores over time were calculated to characterize motion.Main results. Total imaging latency of MRSIGMA (acquisition + matching) was less than 300 ms. TheDicecoefficients were 0.87 ± 0.06 (GTV), 0.86 ± 0.05 (duodenum-stomach), and 0.85 ± 0.05 (small bowel), which indicate high accuracy (high mean value) and low uncertainty (low standard deviation) of MRSIGMA for real-time motion tracking. The center of mass shift was 3.1 ± 2.0 mm (GTV), 5.3 ± 3.0 mm (duodenum-stomach), and 3.4 ± 1.5 mm (small bowel). TheDicescores over time (0.97 ± [0.01-0.03]) were similarly high for MRSIGMA and reference scans in all the three contours.Significance. This work demonstrates the feasibility of real-time 4D MRI using MRSIGMA for volumetric motion tracking on a 1.5T MR-Linac system. The high accuracy and low uncertainty of real-time MRSIGMA is an essential step towards continuous treatment adaptation of tumors affected by real-time respiratory motion and could ultimately improve treatment safety by optimizing ablative dose delivery near gastrointestinal organs.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Movimento (Física) , Órgãos em Risco , Neoplasias Pancreáticas
3.
Sci Rep ; 12(1): 15010, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056131

RESUMO

Flexible radiofrequency coils for magnetic resonance imaging (MRI) have garnered attention in research and industrial communities because they provide improved accessibility and performance and can accommodate a range of anatomic postures. Most recent flexible coil developments involve customized conductors or substrate materials and/or target applications at 3 T or above. In contrast, we set out to design a flexible coil based on an off-the-shelf conductor that is suitable for operation at 0.55 T (23.55 MHz). Signal-to-noise ratio (SNR) degradation can occur in such an environment because the resistance of the coil conductor can be significant with respect to the sample. We found that resonating a commercially available RG-223 coaxial cable shield with a lumped capacitor while the inner conductor remained electrically floating gave rise to a highly effective "cable coil." A 10-cm diameter cable coil was flexible enough to wrap around the knee, an application that can benefit from flexible coils, and had similar conductor loss and SNR as a standard-of-reference rigid copper coil. A two-channel cable coil array also provided good SNR robustness against geometric variability, outperforming a two-channel coaxial coil array by 26 and 16% when the elements were overlapped by 20-40% or gapped by 30-50%, respectively. A 6-channel cable coil array was constructed for 0.55 T knee imaging. Incidental cartilage and bone pathologies were clearly delineated in T1- and T2-weighted turbo spin echo images acquired in 3-4 min with the proposed coil, suggesting that clinical quality knee imaging is feasible in an acceptable examination timeframe. Correcting for T1, the SNR measured with the cable coil was approximately threefold lower than that measured with a 1.5 T state-of-the-art 18-channel coil, which is expected given the threefold difference in main magnetic field strength. This result suggests that the 0.55 T cable coil conductor loss does not deleteriously impact SNR, which might be anticipated at low field.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Desenho de Equipamento , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
4.
Crit Rev Biomed Eng ; 49(3): 1-6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35381158

RESUMO

A simple, cost-effective, do-it-yourself earth field nuclear magnetic resonance spectrometer with shimming is demonstrated. A spectrometer for understanding magnetic resonance physics in an academic environment is presented here along with its coil and system component design. This system was designed with inexpensive and readily available electronic components costing less than US $130. The three signal chains in the system include the polarizer along with the polarization coil, transmitter driver with transceiver coil, and receiver circuit serving as a low-noise amplifier. A microcontroller acting as the signal generator and processor controls the entire system. Switching between the transmitter and the receiver is via a relay circuit. In experiments, the free induction decay obtained from the water sample lasted 2 s with an amplitude of 5 a.u. at 1512 Hz. The line width decreased by 13 Hz after active shimming compared to 3 Hz with passive shimming. The spin echo results of the commercially available Terranova-MRI system with and without sample were used as a benchmark for the low-cost earth field nuclear magnetic resonance spectrometer. The entire system had to be fine-tuned to visualize the free induction decay because the 1.2 kHz and 50 Hz noise was predominant before tuning. Future work will involve the incorporation of gradients and time-shared pulse sequence design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA