Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364540

RESUMO

Wood and biomass are burned in many industries as a sustainable energy source. The large quantities of fly ash produced must be landfilled, leading to environmental concerns. Precipitator wood fly ash (PFA) and ground granulated blast furnace slag (BFS) have been used in this study to prepare alkali-activated composites to manage and recycle the fly ash. After an essential characterization, the influence of parameters such as PFA and BFS content, alkaline activator content (silica moduli of 0, 0.82, 1.32), curing method, and curing duration on the mechanical, chemical, and microstructural properties of the samples have been studied through compressive strength, density, FTIR, and SEM-EDS investigations. The environmental safety and influence of polycondensation on heavy metal stabilization have been examined through ICP-MS. The results prove that oven and hydrothermal curing obtain the early age strength. Despite the variations of strength with duration and type of curing, the compressive strength of samples after 28 days of curing tends to close values for a constant PFA/BFS ratio, due to which the need for energy-intensive curing methods is addressed. ICP-MS shows that the composites can suitably solidify As, Cd, Ba, Cr, Pb, Mo, Se, Hg, Sr, Cu, and Zn. On the other hand, the composites were almost incapable of stabilizing Co and V. Unlike the case for mechanical properties; higher PFA content favours hazardous metal stabilization through polycondensation.


Assuntos
Metais Pesados , Oligoelementos , Cinza de Carvão/química , Madeira , Álcalis/química , Metais Pesados/química
2.
Sci Total Environ ; 914: 169808, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184265

RESUMO

Several conventional chemical stabilizers are used for soil stabilization, among which cement is widely adopted. However, the high energy consumption and environmental challenges associated with these stabilizers have necessitated the transition toward the adoption/deployment of eco-friendly approaches for soil stabilization. Biomediated techniques are sustainable soil improvement methods adopting less toxic microorganisms, enzymes, or polymers for cementing soil. However, these processes also have several drawbacks, such as slow hardening, environmental impact, high cost, and lack of compatibility with different types of soils. It is hypothesized that these limitations may be overcome by exploring the prospects and opportunities offered by hybrid technological approaches involving the integration of nontraditional stabilizers and microbial-induced biomineralization processes for improving problematic soils. This paper discusses selected previous studies integrating different technologies and their benefits and challenges. The emerging fungi-based bio-mediation techniques and the possibility of forming sustainable fungal-based biocomposites to improve problematic soils are also highlighted.


Assuntos
Poluentes do Solo , Solo , Solo/química , Meio Ambiente , Microbiologia do Solo , Poluentes do Solo/análise
3.
Waste Manag ; 166: 346-359, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210958

RESUMO

Polyethene terephthalate (PET) waste poses major environmental harm which can be minimized by reusing it in clay soil stabilization. In general, various polymers are known to reduce hydraulic conductivity and increase the shear strength of clays. However, the application of the effect of a chemically depolymerized form of PET, i.e., Bis (2-Hydroxyethyl) terephthalate (BHET) has not been performed as an additive in Compacted Clay Liners (CCLs) for landfills. This research focuses on the effect of the air curing period (1 and 28 days) on the hydromechanical behavior of BHET-treated SBM (0, 1, 2, 3, and 4 % by dry weight). Results from One Dimensional Consolidation tests showed that an increase in BHET content reduced both compressibility and hydraulic conductivity of SBM due to pore clogging mechanism of swollen BHET hydrogel, however, hydraulic conductivity reduced over 28 days of curing due to loss in re-swelling availability of the hydrogel, thereby allowing less tortuous paths to flow. Results from Consolidated-Drained Direct Shear tests showed that for 1 and 28-days curing, BHET treatment to SBM increased the cohesion (c') due to strong polymer interparticle bridging, however, polymer coating over the sand grains causes a reduction in its surface roughness to decrease the frictional angle (ϕ'). SEM (Scanning Electron Microscopy) and EDX (Energy-dispersive X-ray spectroscopy) analysis on BHET-treated specimens support the flocculation of bentonite, polymer bridging of sand and clay-sand polymer links. A significant Pb2+ removal capacity was also observed with BHET-treated SBM from the batch tests. FTIR (Fourier Transform Infrared Spectroscopy) analysis on batch sorption specimens confirms the role of the carbonyl groups (C = O) and hydroxyl groups (OH) present in the BHET structure indicating the possibility to adsorb Pb2+. The findings of the study suggested that a mechanism of interaction exists between sand-bentonite and BHET polymer and it can be adopted in CCLs design.


Assuntos
Bentonita , Areia , Argila , Bentonita/química , Polietilenotereftalatos , Chumbo
4.
J Biomed Mater Res A ; 110(3): 708-724, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34558808

RESUMO

Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.


Assuntos
Gelatina , Engenharia Tecidual , Gelatina/química , Hidrogéis/química , Metacrilatos , Nanogéis , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA