Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 14(9): 2780-96, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26860404

RESUMO

A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis.


Assuntos
Ciclobutanos/química , Ródio/química , Compostos de Espiro/síntese química , Aminação , Catálise , Estrutura Molecular , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA