Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eng Life Sci ; 20(7): 239-251, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32647503

RESUMO

The reduction of greenhouse gas emissions and future perspectives of circular economy ask for new solutions to produce commodities and fine chemicals. Large-scale bubble columns operated by gaseous substrates such as CO, CO2, and H2 to feed acetogens for product formations could be promising approaches. Valid in silico predictions of large-scale performance are needed to dimension bioreactors properly taking into account biological constraints, too. This contribution deals with the trade-off between sophisticated spatiotemporally resolved large-scale simulations using computationally intensive Euler-Euler and Euler-Lagrange approaches and coarse-grained 1-D models enabling fast performance evaluations. It is shown that proper consideration of gas hold-up is key to predict biological performance. Intrinsic bias of 1-D models can be compensated by reconsideration of Sauter diameters derived from uniquely performed Euler-Lagrange computational fluid dynamics.

2.
Bioengineering (Basel) ; 4(2)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28952507

RESUMO

Successful scale-up of bioprocesses requires that laboratory-scale performance is equally achieved during large-scale production to meet economic constraints. In industry, heuristic approaches are often applied, making use of physical scale-up criteria that do not consider cellular needs or properties. As a consequence, large-scale productivities, conversion yields, or product purities are often deteriorated, which may prevent economic success. The occurrence of population heterogeneity in large-scale production may be the reason for underperformance. In this study, an in silico method to predict the formation of population heterogeneity by combining computational fluid dynamics (CFD) with a cell cycle model of Pseudomonas putida KT2440 was developed. The glucose gradient and flow field of a 54,000 L stirred tank reactor were generated with the Euler approach, and bacterial movement was simulated as Lagrange particles. The latter were statistically evaluated using a cell cycle model. Accordingly, 72% of all cells were found to switch between standard and multifork replication, and 10% were likely to undergo massive, transcriptional adaptations to respond to extracellular starving conditions. At the same time, 56% of all cells replicated very fast, with µ ≥ 0.3 h-1 performing multifork replication. The population showed very strong heterogeneity, as indicated by the observation that 52.9% showed higher than average adenosine triphosphate (ATP) maintenance demands (12.2%, up to 1.5 fold). These results underline the potential of CFD linked to structured cell cycle models for predicting large-scale heterogeneity in silico and ab initio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA