Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232291

RESUMO

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Assuntos
RNA Helicases , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , RNA Helicases/genética , RNA Helicases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Biossíntese de Proteínas , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Ribossomos/metabolismo
2.
Front Oncol ; 14: 1320766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371623

RESUMO

Tight junctions (TJs) are large intercellular adhesion complexes that maintain cell polarity in normal epithelia and endothelia. Claudins are critical components of TJs, forming homo- and heteromeric interaction between adjacent cells, which have emerged as key functional modulators of carcinogenesis and metastasis. Numerous epithelial-derived cancers display altered claudin expression patterns, and these aberrantly expressed claudins have been shown to regulate cancer cell proliferation/growth, metabolism, metastasis and cell stemness. Certain claudins can now be used as biomarkers to predict patient prognosis in a variety of solid cancers. Our understanding of the distinct roles played by claudins during the cancer progression has progressed significantly over the last decade and claudins are now being investigated as possible diagnostic markers and therapeutic targets. In this review, we will summarize recent progress in the use of antibody-based or related strategies for targeting claudins in cancer treatment. We first describe pre-clinical studies that have facilitated the development of neutralizing antibodies and antibody-drug-conjugates targeting Claudins (Claudins-1, -3, -4, -6 and 18.2). Next, we summarize clinical trials assessing the efficacy of antibodies targeting Claudin-6 or Claudin-18.2. Finally, emerging strategies for targeting Claudins, including Chimeric Antigen Receptor (CAR)-T cell therapy and Bi-specific T cell engagers (BiTEs), are also discussed.

3.
Biomaterials ; 309: 122582, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38678699

RESUMO

Cold atmospheric plasma (CAP) is a unique form of physical plasma that has shown great potential for cancer therapy. CAP uses ionized gas to induce lethal oxidative stress on cancer cells; however, the efficacy of CAP therapy continues to be improved. Here, we report an injectable hydrogel-mediated approach to enhance the anti-tumor efficacy of CAP by regulating the phosphorylation of eIF2α. We discovered that reactive oxygen and nitrogen species (ROS/RNS), two main anti-tumor components in CAP, can lead to lethal oxidative stress on tumor cells. Elevated oxidative stress subsequently induces eIF2α phosphorylation, a pathognomonic marker of immunogenic cell death (ICD). Trehalose, a natural disaccharide sugar, can further enhance CAP-induced ICD by elevating the phosphorylation of eIF2α. Moreover, injectable hydrogel-mediated delivery of CAP/trehalose treatment promoted dendritic cell (DC) maturation, initiating tumor-specific T-cell mediated anti-tumor immune responses. The combination therapy also supported the polarization of tumor-associated macrophages to an M1-like phenotype, reversing the immunosuppressive tumor microenvironment and promoting tumor antigen presentation to T cells. In combination with immune checkpoint inhibitors (i.e., anti-programmed cell death protein 1 antibody, aPD1), CAP/trehalose therapy further inhibited tumor growth. Importantly, our findings also indicated that this hydrogel-mediated local combination therapy engaged the host systemic innate and adaptive immune systems to impair the growth of distant tumors.


Assuntos
Gases em Plasma , Trealose , Trealose/química , Trealose/farmacologia , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Células Dendríticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hidrogéis/química , Microambiente Tumoral/efeitos dos fármacos , Feminino , Morte Celular Imunogênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
4.
Mol Cancer Ther ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902871

RESUMO

We have demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. Expression of Claudin-2 in primary CRC is associated with poor survival and is highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADCs) are promising anti-tumor therapeutics that combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Here we report the generation of twenty-eight anti-Claudin-2 antibodies for which the binding specificities, the cross-reactivity with Claudin family members and the cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or extracellular loop 2. Anti-Claudin-2 ADCs were efficiently internalized and effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Our results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing CRC liver-metastatic patients that present with replacement type liver metastases.

5.
Cancer Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137399

RESUMO

The pogo transposable element derived zinc finger protein, POGZ, is notably associated with neurodevelopmental disorders through its role in gene transcription. Many proteins involved in neurological development are often dysregulated in cancer, suggesting a potential role for POGZ in tumor biology. Here, we provided experimental evidence that POGZ influences the growth and metastatic spread of triple negative breast cancers (TNBC). In well-characterized models of TNBC, POGZ exerted a dual role, both as a tumor promoter and metastasis suppressor. Mechanistically, loss of POGZ potentiated TGFß pathway activation to exert cytostatic effects while simultaneously increasing the mesenchymal and migratory properties of breast tumors. Whereas POGZ levels are elevated in human breast cancers, the most aggressive forms of TNBC tumors, including those with increased mesenchymal and metastatic properties, exhibit dampened POGZ levels, and low POGZ expression was associated with inferior clinical outcomes in these tumor types. Taken together, these data suggest that POGZ is a critical suppressor of the early stages of the metastatic cascade.

6.
Redox Biol ; 70: 103028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211442

RESUMO

Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Neoplasias da Mama/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Estresse Oxidativo/fisiologia , Fenótipo , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Redox Biol ; 75: 103276, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053265

RESUMO

Metabolic rewiring is essential for tumor growth and progression to metastatic disease, yet little is known regarding how cancer cells modify their acquired metabolic programs in response to different metastatic microenvironments. We have previously shown that liver-metastatic breast cancer cells adopt an intrinsic metabolic program characterized by increased HIF-1α activity and dependence on glycolysis. Here, we confirm by in vivo stable isotope tracing analysis (SITA) that liver-metastatic breast cancer cells retain a glycolytic profile when grown as mammary tumors or liver metastases. However, hepatic metastases exhibit unique metabolic adaptations including elevated expression of genes involved in glutathione (GSH) biosynthesis and reactive oxygen species (ROS) detoxification when compared to mammary tumors. Accordingly, breast-cancer-liver-metastases exhibited enhanced de novo GSH synthesis. Confirming their increased capacity to mitigate ROS-mediated damage, liver metastases display reduced levels of 8-Oxo-2'-deoxyguanosine. Depletion of the catalytic subunit of the rate-limiting enzyme in glutathione biosynthesis, glutamate-cysteine ligase (GCLC), strongly reduced the capacity of breast cancer cells to form liver metastases, supporting the importance of these distinct metabolic adaptations. Loss of GCLC also affected the early steps of the metastatic cascade, leading to decreased numbers of circulating tumor cells (CTCs) and impaired metastasis to the liver and the lungs. Altogether, our results indicate that GSH metabolism could be targeted to prevent the dissemination of breast cancer cells.

8.
Neuro Oncol ; 26(6): 1052-1066, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38271182

RESUMO

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.


Assuntos
Astrócitos , Neoplasias Encefálicas , Proteína 1 Semelhante à Quitinase-3 , Invasividade Neoplásica , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Camundongos Transgênicos , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA