Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 603(7903): 885-892, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165441

RESUMO

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Assuntos
Doença de Alzheimer , Encéfalo , Suscetibilidade a Doenças , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Estudo de Associação Genômica Ampla , Hipocampo/irrigação sanguínea , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Pericitos/metabolismo , Transcriptoma
2.
Nat Rev Neurosci ; 23(1): 23-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34671105

RESUMO

Recent transcriptomic, histological and functional studies have begun to shine light on the fibroblasts present in the meninges, choroid plexus and perivascular spaces of the brain and spinal cord. Although the origins and functions of CNS fibroblasts are still being described, it is clear that they represent a distinct cell population, or populations, that have likely been confused with other cell types on the basis of the expression of overlapping cellular markers. Recent work has revealed that fibroblasts play crucial roles in fibrotic scar formation in the CNS after injury and inflammation, which have also been attributed to other perivascular cell types such as pericytes and vascular smooth muscle cells. In this Review, we describe the current knowledge of the location and identity of CNS perivascular cell types, with a particular focus on CNS fibroblasts, including their origin, subtypes, roles in health and disease, and future areas for study.


Assuntos
Doenças do Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/fisiologia , Fibroblastos/fisiologia , Animais , Sistema Nervoso Central/citologia , Humanos
3.
Development ; 150(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756588

RESUMO

Perivascular fibroblasts (PVFs) are a fibroblast-like cell type that reside on large-diameter blood vessels in the adult meninges and central nervous system (CNS). PVFs contribute to fibrosis following injury but their homeostatic functions are not defined. PVFs were previously shown to be absent from most brain regions at birth and are only detected postnatally within the cerebral cortex. However, the origin, timing and cellular mechanisms of PVF development are not known. We used Col1a1-GFP and Col1a2-CreERT2 transgenic mice to track PVF development postnatally. Using lineage tracing and in vivo imaging we show that brain PVFs originate from the meninges and are first seen on parenchymal cerebrovasculature at postnatal day (P) 5. After P5, PVF coverage of the cerebrovasculature expands via local cell proliferation and migration from the meninges. Finally, we show that PVFs and perivascular macrophages develop concurrently. These findings provide the first complete timeline for PVF development in the brain, enabling future work into how PVF development is coordinated with cell types and structures in and around the perivascular spaces to support normal CNS vascular function.

4.
Cell ; 139(3): 597-609, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19879845

RESUMO

Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.


Assuntos
Meninges/metabolismo , Neurogênese , Neurônios/citologia , Tretinoína/metabolismo , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Técnicas In Vitro , Camundongos , Prosencéfalo/citologia , Prosencéfalo/metabolismo
5.
Differentiation ; 130: 16-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36528974

RESUMO

The development of the retinal vasculature is essential to maintain health of the tissue, but the developmental mechanisms are not completely understood. The aim of this study was to investigate the cell-autonomous role of retinoic acid signaling in endothelial cells during retina vascular development. Using a temporal and cell-specific mouse model to disrupt retinoic acid signaling in endothelial cells in the postnatal retina (Pdgfbicre/+dnRAR403fl/fl mutants), we discovered that angiogenesis in the retina is significantly decreased with a reduction in retina vascularization, endothelial tip cell number and filipodia, and endothelial 'crowding' of stalk cells. Interestingly, by P15, the vasculature can overcome the early angiogenic defect and fully vascularized the retina. At P60, the vasculature is intact with no evidence of retina cell death or altered blood retinal barrier integrity. Further, we identified that the angiogenic defect seen in mutants at P6 correlates with decreased Vegfr3 expression in endothelial cells. Collectively, our work identified a previously unappreciated function for endothelial retinoic acid signaling in early retinal angiogenesis.


Assuntos
Células Endoteliais , Tretinoína , Camundongos , Animais , Células Endoteliais/metabolismo , Retina , Transdução de Sinais , Vasos Retinianos/metabolismo
6.
Genesis ; 57(7-8): e23287, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30801891

RESUMO

Formation of the vasculature is an essential developmental process, delivering oxygen and nutrients to support cellular processes needed for tissue growth and maturation. Retinoic acid (RA) and its downstream signaling pathway is vital for normal pre- and post-natal development, playing key roles in the specification and formation of many organs and tissues. Here, we review the role of RA in blood and lymph vascular development, beginning with embryonic yolk sac vasculogenesis and remodeling and discussing RA's organ-specific roles in angiogenesis and vessel maturation. In particular, we highlight the multi-faceted role of RA signaling in CNS vascular development and acquisition of blood-brain barrier properties.


Assuntos
Vasos Sanguíneos/metabolismo , Vasos Linfáticos/metabolismo , Neovascularização Fisiológica , Tretinoína/metabolismo , Animais , Vasos Sanguíneos/embriologia , Humanos , Vasos Linfáticos/embriologia , Transdução de Sinais
7.
J Neurosci ; 37(10): 2565-2579, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28154153

RESUMO

Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARß. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.


Assuntos
Diencéfalo/anatomia & histologia , Diencéfalo/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Diencéfalo/embriologia , Ativação Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/fisiologia
8.
Arch Toxicol ; 92(1): 469-485, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28871336

RESUMO

Zoledronate is a bisphosphonate that is widely used in the treatment of metabolic bone diseases. However, zoledronate induces significant nephrotoxicity associated with acute tubular necrosis and renal fibrosis when administered intravenously. There is speculation that zoledronate-induced nephrotoxicity may result from its pharmacological activity as an inhibitor of the mevalonate pathway but the molecular mechanisms are not fully understood. In this report, human proximal tubular HK-2 cells and mouse models were combined to dissect the molecular pathways underlying nephropathy caused by zoledronate treatments. Metabolomic and proteomic assays revealed that multiple cellular processes were significantly disrupted, including the TGFß pathway, fatty acid metabolism and small GTPase signaling in zoledronate-treated HK-2 cells (50 µM) as compared with those in controls. Zoledronate treatments in cells (50 µM) and mice (3 mg/kg) increased TGFß/Smad3 pathway activation to induce fibrosis and kidney injury, and specifically elevated lipid accumulation and expression of fibrotic proteins. Conversely, fatty acid transport protein Slc27a2 deficiency or co-administration of PPARA agonist fenofibrate (20 mg/kg) prevented zoledronate-induced lipid accumulation and kidney fibrosis in mice, indicating that over-expression of fatty acid transporter SLC27A2 and defective fatty acid ß-oxidation following zoledronate treatments were significant factors contributing to its nephrotoxicity. These pharmacological and genetic studies provide an important mechanistic insight into zoledronate-associated kidney toxicity that will aid in development of therapeutic prevention and treatment options for this nephropathy.


Assuntos
Ácidos Graxos/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Ácido Zoledrônico/efeitos adversos , Animais , Benzamidas/farmacologia , Linhagem Celular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Dioxóis/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fenofibrato/farmacologia , Fibrose/induzido quimicamente , Humanos , Nefropatias/patologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Oxirredução/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
9.
J Neurosci ; 36(29): 7786-801, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445154

RESUMO

UNLABELLED: As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood-brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-ß-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT: Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via suppression of WNT inhibitor expression in the neocortex. RA also functions cell-autonomously in brain endothelial cells to modulate WNT signaling and its downstream target, Sox17. The significance of this is although endothelial WNT signaling is required for neurovascular development, too much endothelial WNT signaling, as well as overexpression of its target Sox17, are detrimental. Therefore, RA may act as a "brake" on endothelial WNT signaling and Sox17 to ensure normal brain vascular development.


Assuntos
Encéfalo/citologia , Ventrículos Cerebrais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Via de Sinalização Wnt/fisiologia , Fatores Etários , Oxirredutases do Álcool/deficiência , Oxirredutases do Álcool/genética , Animais , Encéfalo/embriologia , Diferenciação Celular , Células Cultivadas , Ventrículos Cerebrais/embriologia , Embrião de Mamíferos , Células Endoteliais/metabolismo , Efrinas/genética , Efrinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
10.
Dev Biol ; 420(1): 148-165, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671872

RESUMO

Growth and maturation of the cerebrovasculature is a vital event in neocortical development however mechanisms that control cerebrovascular development remain poorly understood. Mutations in or deletions that include the FOXC1 gene are associated with congenital cerebrovascular anomalies and increased stroke risk in patients. Foxc1 mutant mice display severe cerebrovascular hemorrhage at late gestational ages. While these data demonstrate Foxc1 is required for cerebrovascular development, its broad expression in the brain vasculature combined with Foxc1 mutant's complex developmental defects have made it difficult to pinpoint its function(s). Using global and conditional Foxc1 mutants, we find 1) significant cerebrovascular growth defects precede cerebral hemorrhage and 2) expression of Foxc1 in neural crest-derived meninges and brain pericytes, though not endothelial cells, is required for normal cerebrovascular development. We provide evidence that reduced levels of meninges-derived retinoic acid (RA), caused by defects in meninges formation in Foxc1 mutants, is a major contributing factor to the cerebrovascular growth defects in Foxc1 mutants. We provide data that suggests that meninges-derived RA ensures adequate growth of the neocortical vasculature via regulating expression of WNT pathway proteins and neural progenitor derived-VEGF-A. Our findings offer the first evidence for a role of the meninges in brain vascular development and provide new insight into potential causes of cerebrovascular defects in patients with FOXC1 mutations.


Assuntos
Encéfalo/anormalidades , Fatores de Transcrição Forkhead/genética , Meninges/metabolismo , Mutação/genética , Transdução de Sinais , Tretinoína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Células Cultivadas , Hemorragia Cerebral/patologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Imuno-Histoquímica , Integrases/metabolismo , Meninges/efeitos dos fármacos , Camundongos , Neocórtex/irrigação sanguínea , Neocórtex/embriologia , Neocórtex/patologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , beta-Galactosidase/metabolismo
11.
Development ; 141(23): 4489-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25406396

RESUMO

Vascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVß8 activates angiosuppressive TGFß gradients in the brain, which inhibit endothelial cell sprouting. Loss of αVß8 in the brain or downstream TGFß1-TGFBR2-ALK5-Smad3 signaling in endothelial cells increases vascular sprouting, branching and proliferation, leading to vascular dysplasia and hemorrhage. Importantly, BBB function in Itgb8 mutants is intact during early stages of vascular dysgenesis before hemorrhage. By contrast, Pdgfb(ret/ret) mice, which exhibit severe BBB disruption and vascular leak due to pericyte deficiency, have comparatively normal vascular morphogenesis and do not exhibit brain hemorrhage. Our data therefore suggest that abnormal vascular sprouting and patterning, not BBB dysfunction, underlie developmental cerebral hemorrhage.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Hemorragia Cerebral/etiologia , Neovascularização Patológica/complicações , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Encéfalo/metabolismo , Contagem de Células , Células Endoteliais/fisiologia , Imuno-Histoquímica , Integrinas/metabolismo , Camundongos , Microscopia Confocal , Fator de Crescimento Transformador beta/metabolismo
12.
BMC Neurosci ; 17(1): 49, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422020

RESUMO

BACKGROUND: Perivascular stromal cells (PSCs) are a recently identified cell type that comprises a small percentage of the platelet derived growth factor receptor-ß+ cells within the CNS perivascular space. PSCs are activated following injury to the brain or spinal cord, expand in number and contribute to fibrotic scar formation within the injury site. Beyond fibrosis, their high density in the lesion core makes them a potential significant source of signals that act on neural cells adjacent to the lesion site. RESULTS: Our developmental analysis of PSCs, defined by expression of Collagen1a1 in the maturing brain, revealed that PSCs first appear postnatally and may originate from the meninges. PSCs express many of the same markers as meningeal fibroblasts, including expression of the retinoic acid (RA) synthesis proteins Raldh1 and Raldh2. Using a focal brain ischemia injury model to induce PSC activation and expansion, we show a substantial increase in Raldh1+/Raldh2+ PSCs and Raldh1+ activated macrophages in the lesion core. We find that RA levels are significantly elevated in the ischemic hemisphere and induce signaling in astrocytes and neurons in the peri-infarct region. CONCLUSIONS: This study highlights a dual role for activated, non-neural cells where PSCs deposit fibrotic ECM proteins and, along with macrophages, act as a potentially important source of RA, a potent signaling molecule that could influence recovery events in a neuroprotective fashion following brain injury.


Assuntos
Encéfalo/metabolismo , Colágeno Tipo I/metabolismo , Pericitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Tretinoína/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Imuno-Histoquímica , Infarto da Artéria Cerebral Média , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Pericitos/patologia , Acidente Vascular Cerebral/patologia , Células Estromais/metabolismo , Células Estromais/patologia
13.
Sci Adv ; 10(22): eadn7848, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809989

RESUMO

Streptococcus agalactiae [group B Streptococcus (GBS)] is a leading cause of neonatal meningitis, with late-onset disease (LOD) occurring after gastrointestinal tract colonization in infants. Bacterial membrane lipids are essential for host-pathogen interactions, and the functions of glycolipids are yet to be fully elucidated. GBS synthesizes three major glycolipids: glucosyl-diacylglycerol (Glc-DAG), diglucosyl-DAG (Glc2-DAG), and lysyl-Glc-DAG (Lys-Glc-DAG). Here, we identify the enzyme, IagB, as responsible for biosynthesis of Glc-DAG, the precursor for the two other glycolipids in GBS. To examine the collective role of glycolipids to GBS virulence, we adapted a murine model of neonatal meningitis to simulate LOD. The GBS∆iagB mutant traversed the gut-epithelial barrier comparable to wild type but was severely attenuated in bloodstream survival, resulting in decreased bacterial loads in the brain. The GBS∆iagB mutant was more susceptible to neutrophil killing and membrane targeting by host antimicrobial peptides. This work reveals an unexplored function of GBS glycolipids with their ability to protect the bacterial cell from host antimicrobial killing.


Assuntos
Glicolipídeos , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Animais , Glicolipídeos/metabolismo , Glicolipídeos/imunologia , Camundongos , Virulência , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Humanos , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mutação
14.
Neuro Oncol ; 26(3): 538-552, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-37934854

RESUMO

BACKGROUND: Pediatric high-grade gliomas (PHGG) are aggressive brain tumors with 5-year survival rates ranging from <2% to 20% depending upon subtype. PHGG presents differently from patient to patient and is intratumorally heterogeneous, posing challenges in designing therapies. We hypothesized that heterogeneity occurs because PHGG comprises multiple distinct tumor and immune cell types in varying proportions, each of which may influence tumor characteristics. METHODS: We obtained 19 PHGG samples from our institution's pediatric brain tumor bank. We constructed a comprehensive transcriptomic dataset at the single-cell level using single-cell RNA-Seq (scRNA-Seq), identified known glial and immune cell types, and performed differential gene expression and gene set enrichment analysis. We conducted multi-channel immunofluorescence (IF) staining to confirm the transcriptomic results. RESULTS: Our PHGG samples included 3 principal predicted tumor cell types: astrocytes, oligodendrocyte progenitors (OPCs), and mesenchymal-like cells (Mes). These cell types differed in their gene expression profiles, pathway enrichment, and mesenchymal character. We identified a macrophage population enriched in mesenchymal and inflammatory gene expression as a possible source of mesenchymal tumor characteristics. We found evidence of T-cell exhaustion and suppression. CONCLUSIONS: PHGG comprises multiple distinct proliferating tumor cell types. Microglia-derived macrophages may drive mesenchymal gene expression in PHGG. The predicted Mes tumor cell population likely derives from OPCs. The variable tumor cell populations rely on different oncogenic pathways and are thus likely to vary in their responses to therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Sequenciamento do Exoma , Fenótipo
15.
Mol Pharm ; 10(2): 650-63, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23268600

RESUMO

The barrier epithelia of the cornea and retina control drug and nutrient access to various compartments of the human eye. While ocular transporters are likely to play a critical role in homeostasis and drug delivery, little is known about their expression, localization and function. In this study, the mRNA expression levels of 445 transporters, metabolic enzymes, transcription factors and nuclear receptors were profiled in five regions of the human eye: cornea, iris, ciliary body, choroid and retina. Through RNA expression profiling and immunohistochemistry, several transporters were identified as putative targets for drug transport in ocular tissues. Our analysis identified SLC22A7 (OAT2), a carrier for the antiviral drug acyclovir, in the corneal epithelium, in addition to ABCG2 (BCRP), an important xenobiotic efflux pump, in retinal nerve fibers and the retinal pigment epithelium. Collectively, our results provide an understanding of the transporters that serve to maintain ocular homeostasis and which may be potential targets for drug delivery to deep compartments of the eye.


Assuntos
Olho/metabolismo , Perfilação da Expressão Gênica/métodos , Transportadores de Ânions Orgânicos Dependentes de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aciclovir/metabolismo , Córnea/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Dependentes de ATP/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Curr Opin Neurobiol ; 79: 102676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773497

RESUMO

The spatial and temporal development of the brain, overlying meninges (fibroblasts, vasculature and immune cells) and calvarium are highly coordinated. In particular, the timing of meningeal fibroblasts into molecularly distinct pia, arachnoid and dura subtypes coincides with key developmental events in the brain and calvarium. Further, the meninges are positioned to influence development of adjacent structures and do so via depositing basement membrane and producing molecular cues to regulate brain and calvarial development. Here, we review the current knowledge of how meninges development aligns with events in the brain and calvarium and meningeal fibroblast "crosstalk" with these structures. We summarize outstanding questions and how the use of non-mammalian models to study the meninges will substantially advance the field of meninges biology.


Assuntos
Dura-Máter , Meninges , Aracnoide-Máter/irrigação sanguínea , Encéfalo
17.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993587

RESUMO

Perivascular fibroblasts (PVFs) are a fibroblast-like cell type that reside on large-diameter blood vessels in the adult meninges and central nervous system (CNS). PVFs drive fibrosis following injury but their homeostatic functions are not well detailed. In mice, PVFs were previously shown to be absent from most brain regions at birth and are only detected postnatally within the cerebral cortex. However, the origin, timing, and cellular mechanisms of PVF development are not known. We used Col1a1-GFP and Col1a2-CreERT transgenic mice to track PVF developmental timing and progression in postnatal mice. Using a combination of lineage tracing and in vivo imaging we show that brain PVFs originate from the meninges and are first seen on parenchymal cerebrovasculature at postnatal day (P)5. After P5, PVF coverage of the cerebrovasculature rapidly expands via mechanisms of local cell proliferation and migration from the meninges, reaching adult levels at P14. Finally, we show that PVFs and perivascular macrophages (PVMs) develop concurrently along postnatal cerebral blood vessels, where the location and depth of PVMs and PVFs highly correlate. These findings provide the first complete timeline for PVF development in the brain, enabling future work into how PVF development is coordinated with cell types and structures in and around the perivascular spaces to support normal CNS vascular function. Summary: Brain perivascular fibroblasts migrate from their origin in the meninges and proliferate locally to fully cover penetrating vessels during postnatal mouse development.

18.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38077064

RESUMO

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

19.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095361

RESUMO

In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells, and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.


Assuntos
Crista Neural , Tubo Neural , Camundongos , Animais , Crista Neural/fisiologia , Neuroglia , Células de Schwann , Pele , Diferenciação Celular/fisiologia
20.
Res Sq ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168409

RESUMO

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA