Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biochem ; 11: 44, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21059249

RESUMO

BACKGROUND: Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (pre)proinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK. RESULTS: Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further region in each proinsulin domain (A- and B-chain, C-peptide). Among the latter, peptides covering most of the B-chain region B11-23 exhibited strongest binding, which was in the range of known high-affinity DnaK ligands, dissociation equilibrium constant (K'd) of 2.2 ± 0.4 µM. The B-chain region B11-23 is located at the interface between two insulin molecules and not accessible in insulin oligomers. Indeed, native insulin oligomers showed very low DnaK affinity (K'd 67.8 ± 20.8 µM) whereas a proinsulin molecule modified to prevent oligomerization showed good binding affinity (K'd 11.3 ± 7.8 µM). CONCLUSIONS: Intact insulin only weakly interacts with the hsp70 chaperone DnaK whereas monomeric proinsulin and peptides from 3 distinct proinsulin regions show substantial chaperone binding. Strongest binding was seen for the B-chain peptide B 11-23. Interestingly, peptide B11-23 represents a dominant autoantigen in type 1 diabetes.


Assuntos
Autoantígenos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proinsulina/química , Proinsulina/metabolismo , Sequência de Aminoácidos , Autoantígenos/imunologia , Proteínas de Bactérias/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Insulina/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proinsulina/imunologia , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
2.
Nat Commun ; 9(1): 4867, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451826

RESUMO

Osm1 and Frd1 are soluble fumarate reductases from yeast that are critical for allowing survival under anaerobic conditions. Although they maintain redox balance during anaerobiosis, the underlying mechanism is not understood. Here, we report the crystal structure of a eukaryotic soluble fumarate reductase, which is unique among soluble fumarate reductases as it lacks a heme domain. Structural and enzymatic analyses indicate that Osm1 has a specific binding pocket for flavin molecules, including FAD, FMN, and riboflavin, catalyzing their oxidation while reducing fumarate to succinate. Moreover, ER-resident Osm1 can transfer electrons from the Ero1 FAD cofactor to fumarate either by free FAD or by a direct interaction, allowing de novo disulfide bond formation in the absence of oxygen. We conclude that soluble eukaryotic fumarate reductases can maintain an oxidizing environment under anaerobic conditions, either by oxidizing cellular flavin cofactors or by a direct interaction with flavoenzymes such as Ero1.


Assuntos
Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Glicoproteínas/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Riboflavina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/química , Anaerobiose/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cinética , Simulação de Acoplamento Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Shewanella/enzimologia , Shewanella/genética , Especificidade por Substrato , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Triazinas/química , Triazinas/metabolismo
3.
J Mol Biol ; 353(4): 888-96, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16198374

RESUMO

GrpE is the nucleotide-exchange factor of the DnaK chaperone system. Escherichia coli cells with the classical temperature-sensitive grpE280 phenotype do not grow under heat-shock conditions and have been found to carry the G122D point mutation in GrpE. To date, the molecular mechanism of this defect has not been investigated in detail. Here, we examined the structural and functional properties of isolated GrpE(G122D) in vitro. Similar to wild-type GrpE, GrpE(G122D) is an elongated dimer in solution. Compared to wild-type GrpE, GrpE(G122D) catalyzed the ADP/ATP exchange in DnaK only marginally and did not compete with wild-type GrpE in interacting with DnaK. In the presence of ADP, GrpE(G122D) in contrast to wild-type GrpE, did not form a complex with DnaK detectable by size-exclusion chromatography with on-line static light-scattering and differential refractometry. Apparently, GrpE(G122D) in the presence of ADP binds to DnaK only with much lower affinity than wild-type GrpE. GrpE(G122D) could not substitute for wild-type GrpE in the refolding of denatured proteins by the DnaK/DnaJ/GrpE chaperone system. In the crystal structure of a (Delta1-33)GrpE(G122D).DnaK-ATPase complex, which as yet is the only available structure of a GrpE variant, Asp122 does not interact directly with neighboring residues of GrpE or DnaK. The far-UV circular dichroism spectra of mutant and wild-type GrpE proved slightly different. Possibly, a discrete change in conformation impairs the formation of the complex with DnaK and renders GrpE(G122D) virtually inactive as a nucleotide exchange factor. In view of the drastically reduced ADP/ATP-exchange activity of GrpE(G122D), the heat sensitivity of grpE280 cells might be explained by the ensuing slowing of the chaperone cycle and the increased sequestering of target proteins by high-affinity, ADP-liganded DnaK, both effects being incompatible with efficient chaperone action required for cell growth.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Mutação/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucosefosfato Desidrogenase/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Cinética , Luciferases/metabolismo , Fenótipo , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína
4.
FEBS Lett ; 562(1-3): 105-10, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15044009

RESUMO

The familiar heat shock response in cells comprises the enhanced expression of molecular chaperones. In recent experiments with the Hsp70 system of Escherichia coli, the co-chaperone GrpE has been found to undergo a reversible thermal transition in the physiological temperature range. Here, we tested whether this thermal transition is of functional significance in the complete DnaK/DnaJ/GrpE chaperone system. We found that a mere increase in temperature resulted in a higher fraction of fluorescence-labeled peptides being sequestered by DnaK. This direct adaptation of the DnaK/DnaJ/GrpE chaperone system to heat shock conditions may serve to bridge the time lag of enhanced chaperone expression.


Assuntos
2-Naftilamina/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Chaperonas Moleculares/metabolismo , 2-Naftilamina/metabolismo , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Substâncias Macromoleculares , Chaperonas Moleculares/química , Peptídeos/metabolismo
5.
J Biol Chem ; 281(45): 34448-56, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16940296

RESUMO

DnaK, an Hsp70 molecular chaperone, processes its substrates in an ATP-driven cycle, which is controlled by the co-chaperones DnaJ and GrpE. The kinetic analysis of substrate binding and release has as yet been limited to fluorescence-labeled peptides. Here, we report a comprehensive kinetic analysis of the chaperone action with protein substrates. The kinetic partitioning of the (ATP x DnaK) x substrate complexes between dissociation and conversion into stable (ADP x DnaK) x substrate complexes is determined by DnaJ. In the case of substrates that allow the formation of ternary (ATP x DnaK) x substrate x DnaJ complexes, the cis-effect of DnaJ markedly accelerates ATP hydrolysis. This triage mechanism efficiently selects from the (ATP x DnaK) x substrate complexes those to be processed in the chaperone cycle; at 45 degrees C, the fraction of protein complexes fed into the cycle is 20 times higher than that of peptide complexes. The thermosensor effect of the ADP/ATP exchange factor GrpE retards the release of substrate from the cycle at higher temperatures; the fraction of total DnaK in stable (ADP x DnaK) x substrate complexes is 2 times higher at 45 degrees C than at 25 degrees C. Monitoring the cellular situation by DnaJ as nonnative protein sensor and GrpE as thermosensor thus directly adapts the operational mode of the DnaK system to heat shock conditions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Escherichia coli/metabolismo , Temperatura Alta , Hidrólise , Cinética , Modelos Moleculares
6.
J Biol Chem ; 280(15): 14395-401, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15705578

RESUMO

In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Difosfato de Adenosina/química , Dissulfetos/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Glucosefosfato Desidrogenase/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Temperatura Alta , Luciferases/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo
7.
J Biol Chem ; 278(21): 19048-53, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12639955

RESUMO

Temperature directly controls functional properties of the DnaK/DnaJ/GrpE chaperone system. The rate of the high to low affinity conversion of DnaK shows a non-Arrhenius temperature dependence and above approximately 40 degrees C even decreases. In the same temperature range, the ADP/ATP exchange factor GrpE undergoes an extensive, fully reversible thermal transition (Grimshaw, J. P. A., Jelesarov, I., Schönfeld, H. J., and Christen, P. (2001) J. Biol. Chem. 276, 6098-6104). To show that this transition underlies the thermal regulation of the chaperone system, we introduced an intersubunit disulfide bond into the paired long helices of the GrpE dimer. The transition was absent in disulfide-linked GrpE R40C but was restored by reduction. With disulfide-stabilized GrpE, the rate of ADP/ATP exchange and conversion of DnaK from its ADP-liganded high affinity R state to the ATP-liganded low affinity T state continuously increased with increasing temperature. With reduced GrpE R40C, the conversion became slower at temperatures >40 degrees C, as observed with wild-type GrpE. Thus, the long helix pair in the GrpE dimer acts as a thermosensor that, by decreasing its ADP/ATP exchange activity, induces a shift of the DnaK.substrate complexes toward the high affinity R state and in this way adapts the DnaK/DnaJ/GrpE system to heat shock conditions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/fisiologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/fisiologia , Temperatura Alta , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Dimerização , Dissulfetos/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Proteínas de Choque Térmico/genética , Cinética , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA