Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Pharmacol Rev ; 74(1): 238-270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017178

RESUMO

GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6ßγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6ßδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.


Assuntos
Cerebelo , Receptores de GABA-A , Animais , Cerebelo/metabolismo , Humanos , Neurônios/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
2.
Pharmacol Rev ; 70(4): 836-878, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275042

RESUMO

GABAA receptors are the major inhibitory transmitter receptors in the brain. They are ligand-gated chloride channels and the site of action of benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 homologous subunits and their distinct regional, cellular, and subcellular distribution gives rise to a large number of GABAA receptor subtypes with distinct pharmacology, which modulate different functions of the brain. A variety of compounds have been identified that were claimed to modulate selectively individual GABAA receptor subtypes. However, many of these compounds have only incompletely been investigated or, in addition to a preferential modulation of a receptor subtype, also modulate other subtypes at similar concentrations. Although their differential efficacy at distinct receptor subtypes reduced side effects in behavioral experiments in rodents, the exact receptor subtypes mediating their behavioral effects cannot be unequivocally delineated. In addition, the discrepant in vivo effects of some of these compounds in rodents and man raised doubts on the applicability of the concept of receptor subtype selectivity as a guide for the development of clinically useful drugs. Here, we provide an up-to-date review on the currently available GABAA receptor subtype-selective ligands. We present data on their actual activity at GABAA receptor subtypes, discuss the translational aspect of subtype-selective drugs, and make proposals for the future development of ligands with better anxioselectivity in humans. Finally, we discuss possible ways to strengthen the conclusions of behavioral studies with the currently available drugs.


Assuntos
Receptores de GABA-A/metabolismo , Animais , Humanos , Ligantes
3.
J Pharmacol Exp Ther ; 366(1): 145-157, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720564

RESUMO

In nonhuman primates we tested a new set of behavioral categories for observable sedative effects using pediatric anesthesiology classifications as a basis. Using quantitative behavioral observation techniques in rhesus monkeys, we examined the effects of alprazolam and diazepam (nonselective benzodiazepines), zolpidem (preferential binding to α1 subunit-containing GABAA receptors), HZ-166 (8-ethynyl-6-(2'-pyridine)-4H-2,5,10b-triaza-benzo[e]azulene-3-carboxylic acid ethyl ester; functionally selective with relatively high intrinsic efficacy for α2 and α3 subunit-containing GABAA receptors), MRK-696 [7-cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-2-ylmethoxy)-3-(2-flurophenyl)-1,2,4-triazolo(4,3-b)pyridazine; no selectivity but partial intrinsic activity], and TPA023B 6,2'-diflouro-5'-[3-(1-hydroxy-1-methylethyl)imidazo[1,2-b][1,2,4]triazin-7-yl]biphenyl-2-carbonitrile; partial intrinsic efficacy and selectivity for α2, α3, α5 subunit-containing GABAA receptors]. We further examined the role of α1 subunit-containing GABAA receptors in benzodiazepine-induced sedative effects by pretreating animals with the α1 subunit-preferring antagonist ß-carboline-3-carboxylate-t-butyl ester (ßCCT). Increasing doses of alprazolam and diazepam resulted in the emergence of observable ataxia, rest/sleep posture, and moderate and deep sedation. In contrast, zolpidem engendered dose-dependent observable ataxia and deep sedation but not rest/sleep posture or moderate sedation, and HZ-166 and TPA023 induced primarily rest/sleep posture. MRK-696 induced rest/sleep posture and observable ataxia. Zolpidem, but no other compounds, significantly increased tactile/oral exploration. The sedative effects engendered by alprazolam, diazepam, and zolpidem generally were attenuated by ßCCT pretreatments, whereas rest/sleep posture and suppression of tactile/oral exploration were insensitive to ßCCT administration. These data suggest that α2/3-containing GABAA receptor subtypes unexpectedly may mediate a mild form of sedation (rest/sleep posture), whereas α1-containing GABAA receptors may play a role in moderate/deep sedation.


Assuntos
Benzodiazepinas/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino
4.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221036

RESUMO

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Conotoxinas , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Elapidae , Camundongos , Estrutura Secundária de Proteína , Receptores de GABA-A/genética
5.
J Neurophysiol ; 115(3): 1183-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631150

RESUMO

The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.


Assuntos
Núcleos Intralaminares do Tálamo/metabolismo , Receptores de GABA-A/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/crescimento & desenvolvimento , Núcleos Intralaminares do Tálamo/fisiologia , Camundongos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética
6.
Nat Chem Biol ; 9(11): 715-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056400

RESUMO

Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin that have been identified using X-ray crystallography. Using a combination of protiated and deuterated versions of the reagent to label mammalian receptors in intact membranes, we identified a new binding site for propofol in GABAA receptors consisting of both ß3 homopentamers and α1ß3 heteropentamers. The binding site is located within the ß subunit at the interface between the transmembrane domains and the extracellular domain and lies close to known determinants of anesthetic sensitivity in the transmembrane segments TM1 and TM2.


Assuntos
Marcadores de Fotoafinidade/análise , Propofol/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Estrutura Molecular , Marcadores de Fotoafinidade/química , Propofol/química , Albumina Sérica/química , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 109(44): E3028-34, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23035248

RESUMO

GABA(A) receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA(A) receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their concentration, occupy two possible sites in ELIC. An intrasubunit site is adjacent to the GABA-recognition site but faces the channel vestibule. A second intersubunit site partially overlaps with the GABA site and likely corresponds to a low-affinity benzodiazepine-binding site in GABA(A) receptors that mediates inhibitory effects of the benzodiazepine flurazepam. Our study offers a structural view how GABA and benzodiazepines are recognized at a GABA-activated ion channel.


Assuntos
Benzodiazepinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Benzodiazepinas/metabolismo , Sítios de Ligação , Biopolímeros , Cristalografia por Raios X , Canais Iônicos/química , Ligantes , Modelos Moleculares , Receptores de GABA-A/metabolismo , Xenopus
8.
Nat Chem Biol ; 8(5): 455-64, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22446838

RESUMO

Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABA(A) receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an unbiased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design.


Assuntos
Ansiolíticos/química , Simulação por Computador , Diazepam/química , Desenho de Fármacos , Agonistas de Receptores de GABA-A/química , Modelos Químicos , Receptores de GABA-A/química , Sequência de Aminoácidos , Animais , Ansiolíticos/farmacologia , Sítios de Ligação , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Diazepam/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Camundongos , Dados de Sequência Molecular , Relação Estrutura-Atividade
9.
Neurochem Res ; 39(6): 1057-1067, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24072672

RESUMO

GABAA receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are the targets of many clinically important drugs, which modulate GABA induced chloride flux by interacting with separate and distinct allosteric binding sites. Recently, we described an allosteric modulation occurring upon binding of pyrazoloquinolinones to a novel binding site at the extracellular α+ ß- interface. Here, we investigated the effect of 4-(8-methoxy-3-oxo-3,5-dihydro-2H-pyrazolo[4,3-c]quinolin-2-yl)benzonitrile (the pyrazoloquinolinone LAU 177) at several αß, αßγ and αßδ receptor subtypes. LAU 177 enhanced GABA-induced currents at all receptors investigated, and the extent of modulation depended on the type of α and ß subunits present within the receptors. Whereas the presence of a γ2 subunit within αßγ2 receptors did not dramatically change LAU 177 induced modulation of GABA currents compared to αß receptors, we observed an unexpected threefold increase in modulatory efficacy of this compound at α1ß2,3δ receptors. Steric hindrance experiments as well as inhibition by the functional α+ ß- site antagonist LAU 157 indicated that the effects of LAU 177 at all receptors investigated were mediated via the α+ ß- interface. The stronger enhancement of GABA-induced currents by LAU 177 at α1ß3δ receptors was not observed at α4,6ß3δ receptors. Other experiments indicated that this enhancement of modulatory efficacy at α1ß3δ receptors was not observed with another α+ ß- modulator, and that the efficacy of modulation by α+ ß- ligands is influenced by all subunits present in the receptor complex and by structural details of the respective ligand.


Assuntos
Agonistas GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Agonistas GABAérgicos/farmacologia , Ligantes , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Ratos , Xenopus laevis
10.
Mol Cell Proteomics ; 11(1): M111.011445, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22338125

RESUMO

Mass spectrometric sequencing of low abundance, integral membrane proteins, particularly the transmembrane domains, presents challenges that span the multiple phases of sample preparation including solubilization, purification, enzymatic digestion, peptide extraction, and chromatographic separation. We describe a method through which we have obtained high peptide coverage for 12 γ-aminobutyric acid type A receptor (GABAA receptor) subunits from 2 picomoles of affinity-purified GABAA receptors from rat brain neocortex. Focusing on the α1 subunit, we identified peptides covering 96% of the protein sequence from fragmentation spectra (MS2) using a database searching algorithm and deduced 80% of the amino acid residues in the protein from de novo sequencing of Orbitrap spectra. The workflow combined microscale membrane protein solubilization, protein delipidation, in-solution multi-enzyme digestion, multiple stationary phases for peptide extraction, and acquisition of high-resolution full scan and fragmentation spectra. For de novo sequencing of peptides containing the transmembrane domains, timed digestions with chymotrypsin were utilized to generate peptides with overlapping sequences that were then recovered by sequential solid phase extraction using a C4 followed by a porous graphitic carbon stationary phase. The specificity of peptide identifications and amino acid residue sequences was increased by high mass accuracy and charge state assignment to parent and fragment ions. Analysis of three separate brain samples demonstrated that 78% of the sequence of the α1 subunit was observed in all three replicates with an additional 13% covered in two of the three replicates, indicating a high degree of sequence coverage reproducibility. Label-free quantitative analysis was applied to the three replicates to determine the relative abundances of 11 γ-aminobutyric acid type A receptor subunits. The deep sequence MS data also revealed two N-glycosylation sites on the α1 subunit, confirmed two splice variants of the γ2 subunit (γ2L and γ2S) and resolved a database discrepancy in the sequence of the α5 subunit.


Assuntos
Espectrometria de Massas/métodos , Receptores de GABA-A/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Neocórtex , Peptídeos/química , Isoformas de Proteínas , Subunidades Proteicas/química , Ratos , Extração em Fase Sólida
11.
Proc Natl Acad Sci U S A ; 108(11): 4465-70, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368176

RESUMO

Binge drinking (blood-alcohol levels ≥ 0.08 g% in a 2-h period), is a significant public health burden in need of improved treatment. Gene therapy may offer beneficial alternatives to current psychosocial and pharmacotherapeutic interventions, but identification of the target genes is a clinical challenge. We report that a GABA(A) α2 siRNA vector (pHSVsiLA2) infused into the central nucleus of the amygdala (CeA) of alcohol-preferring (P) rats caused profound and selective reduction of binge drinking associated with inhibition of α2 expression, decreased GABA(A) receptor density, and inhibition of Toll-like receptor 4 (TLR4). CeA infusion of a TLR4 siRNA vector (pHSVsiLTLR4a) also inhibited binge drinking, but neither vector functioned when infused into the ventral pallidum. Binge drinking was inhibited by a GABA(A) α1 siRNA vector (pHSVsiLA1) infused into the ventral pallidum, unrelated to TLR4. The vectors did not alter sucrose intake and a scrambled siRNA vector was negative. The data indicate that GABA(A) α2-regulated TLR4 expression in the CeA contributes to binge drinking and may be a key early neuroadaptation in excessive drinking.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Tonsila do Cerebelo/metabolismo , Receptores de GABA-A/metabolismo , Receptor 4 Toll-Like/metabolismo , Tonsila do Cerebelo/patologia , Animais , Vetores Genéticos , Humanos , RNA Interferente Pequeno/metabolismo , Ratos
12.
Arch Pharmacol Ther ; 6(1): 047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283799

RESUMO

α6-containing GABAA receptors (α6GABAARs) are strongly expressed in cerebellar granule cells, where they mediate a correctly timed and precise coordination of all muscle groups that execute behavior and protect the brain from information overflow. Recently, it was demonstrated that positive modulators with a high selectivity for α6GABAARs (α6-modulators) can reduce the symptoms of multiple neuropsychiatric disorders in respective animal models to an extent comparable with established clinical therapeutics. Here, these incredible findings are discussed and explained. So far, the beneficial actions of α6-modulators and their lack of side effects have only been demonstrated in animal models of the respective disorders. Preclinical studies have demonstrated their suitability for further drug development. Future human studies have to investigate their safety and possible side effects, and to clarify to which extent individual symptoms of the respective disorders can be reduced by α6-modulators in patients during acute and chronic dosing. Due to their broad therapeutic potential, α6-modulators might become a valuable new treatment option for multiple neuropsychiatric disorders.

13.
J Biol Chem ; 287(17): 14201-14, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22389504

RESUMO

γ-Aminobutyric acid type A (GABA(A)) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABA(A) receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABA(A) receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABA(A) receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABA(A) receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABA(A) receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABA(A) receptor subtypes and might contribute to anchoring and/or confining GABA(A) receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Animais , Encéfalo/embriologia , Proteínas de Transporte/química , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de Membrana/química , Neurotransmissores/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo
14.
J Biol Chem ; 287(32): 27079-86, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22613724

RESUMO

Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a ß-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 µm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 µm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1ß1εδ) than the fetal form (α1ß1γδ), EC(50) being 0.44 ± 0.1 µm and 1.56 ± 0.37 µm, respectively. The peptide had no effect on GABA(A) (α1ß3γ2 or α2ß3γ2) receptors at a concentration up to 100 µm or on 5-HT(3) receptors at a concentration up to 10 µm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.


Assuntos
Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia
15.
Bioorg Med Chem ; 21(1): 93-101, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23218469

RESUMO

Selective modulation of specific benzodiazepine receptor (BzR) gamma amino butyric acid-A (GABA(A)) receptor ion channels has been identified as an important method for separating out the variety of pharmacological effects elicited by BzR-related drugs. Importantly, it has been demonstrated that both α2ß(2/3)γ2 (α2BzR) and α3BzR (and/or α2/α3) BzR subtype selective ligands exhibit anxiolytic effects with little or no sedation. Previously we have identified several such ligands; however, three of our parent ligands exhibited significant metabolic liability in rodents in the form of a labile ester group. Here eight analogs are reported which were designed to circumvent this liability by utilizing a rational replacement of the ester moiety based on medicinal chemistry precedents. In a metabolic stability study using human liver microsomes, four compounds were found to undergo slower metabolic transformation, as compared to their corresponding ester analogs. These compounds were also evaluated in in vitro efficacy assays. Additionally, bioisostere 11 was evaluated in a rodent model of anxiety. It exhibited anxiolytic activity at doses of 10 and 100mg/kg and was devoid of sedative properties.


Assuntos
Ansiolíticos/química , Ansiolíticos/uso terapêutico , Benzodiazepinas/química , Benzodiazepinas/uso terapêutico , Microssomos Hepáticos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ansiolíticos/metabolismo , Ansiolíticos/farmacocinética , Ansiedade/tratamento farmacológico , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacocinética , Humanos , Ligantes , Locomoção/efeitos dos fármacos , Camundongos
16.
Neurotherapeutics ; 20(2): 399-418, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696034

RESUMO

Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.


Assuntos
Tremor Essencial , Camundongos , Masculino , Animais , Tremor Essencial/induzido quimicamente , Tremor Essencial/tratamento farmacológico , Harmalina/efeitos adversos , Tremor/tratamento farmacológico , Etanol , Propranolol , Camundongos Endogâmicos ICR , Receptores de GABA-A
17.
J Neurosci ; 31(3): 870-7, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21248110

RESUMO

GABA(A) receptors mediate the action of many clinically important drugs interacting with different binding sites. For some potential binding sites, no interacting drugs have yet been identified. Here, we established a steric hindrance procedure for the identification of drugs acting at the extracellular α1+ß3- interface, which is homologous to the benzodiazepine binding site at the α1+γ2- interface. On screening of >100 benzodiazepine site ligands, the anxiolytic pyrazoloquinoline 2-p-methoxyphenylpyrazolo[4,3-c]quinolin-3(5H)-one (CGS 9895) was able to enhance GABA-induced currents at α1ß3 receptors from rat. CGS 9895 acts as an antagonist at the benzodiazepine binding site at nanomolar concentrations, but enhances GABA-induced currents via a different site present at α1ß3γ2 and α1ß3 receptors. By mutating pocket-forming amino acid residues at the α1+ and the ß3- side to cysteines, we demonstrated that covalent labeling of these cysteines by the methanethiosulfonate ethylamine reagent MTSEA-biotin was able to inhibit the effect of CGS 9895. The inhibition was not caused by a general inactivation of GABA(A) receptors, because the GABA-enhancing effect of ROD 188 or the steroid α-tetrahydrodeoxycorticosterone was not influenced by MTSEA-biotin. Other experiments indicated that the CGS 9895 effect was dependent on the α and ß subunit types forming the interface. CGS 9895 thus represents the first prototype of drugs mediating benzodiazepine-like modulatory effects via the α+ß- interface of GABA(A) receptors. Since such binding sites are present at αß, αßγ, and αßδ receptors, such drugs will have a much broader action than benzodiazepines and might become clinical important for the treatment of epilepsy.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Subunidades Proteicas/fisiologia , Receptores de GABA-A/fisiologia , Análise de Variância , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Flumazenil/farmacologia , Pirazóis/farmacologia , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
18.
J Struct Biol ; 179(1): 46-55, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580066

RESUMO

Baculovirus infected insect cells are widely used for heterologous protein expression. Despite the power of this system, the use of baculovirus techniques for protein expression screening is hampered by the time and resources needed to generate each recombinant baculovirus. Here, we show that a transfection/infection based expression system is suitable for screening of expression constructs in insect cells and represents a valid alternative to other traditional screening methodologies using recombinant baculovirus. The described method is based on gene delivery by transfection coupled to the induction of protein expression by non-recombinant baculovirus infection. Vectors that control expression by a combination of the baculovirus promoters ie1 and p10 and the enhancer element hr5 are among the ones suitable for this method. Infection with non-recombinant baculovirus drastically increases the basal activity of these elements, leading to protein over-expression. Multiple vectors can be simultaneously co-transfected/infected, making transfection/infection amenable for screening of multiple co-expressed proteins and protein complexes. Taken together, our results prove that the transfection/infection protocol is a valid and innovative approach for increasing speed and reducing costs of protein expression screening for structural and functional studies.


Assuntos
Baculoviridae/genética , Vetores Genéticos/genética , Proteínas Recombinantes/biossíntese , Spodoptera/virologia , Transfecção/métodos , Animais , Baculoviridae/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Spodoptera/citologia , Spodoptera/metabolismo
19.
Mol Pharmacol ; 82(3): 408-19, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22648971

RESUMO

Accumulated evidence suggests that neurosteroids modulate GABA(A) receptors through binding interactions with transmembrane domains. To identify these neurosteroid binding sites directly, a neurosteroid-analog photolabeling reagent, (3α,5ß)-6-azi-pregnanolone (6-AziP), was used to photolabel membranes from Sf9 cells expressing high-density, recombinant, His(8)-ß3 homomeric GABA(A) receptors. 6-AziP inhibited (35)S-labeled t-butylbicyclophosphorothionate binding to the His(8)-ß3 homomeric GABA(A) receptors in a concentration-dependent manner (IC(50) = 9 ± 1 µM), with a pattern consistent with a single class of neurosteroid binding sites. [(3)H]6-AziP photolabeled proteins of 30, 55, 110, and 150 kDa, in a concentration-dependent manner. The 55-, 110-, and 150-kDa proteins were identified as His(8)-ß3 subunits through immunoblotting and through enrichment on a nickel affinity column. Photolabeling of the ß3 subunits was stereoselective, with [(3)H]6-AziP producing substantially greater labeling than an equal concentration of its diastereomer [(3)H](3ß,5ß)-6-AziP. High-resolution mass spectrometric analysis of affinity-purified, 6-AziP-labeled His(8)-ß3 subunits identified a single photolabeled peptide, ALLEYAF-6-AziP, in the third transmembrane domain. The identity of this peptide and the site of incorporation on Phe301 were confirmed through high-resolution tandem mass spectrometry. No other sites of photoincorporation were observed despite 90% sequence coverage of the whole ß3 subunit protein, including 84% of the transmembrane domains. This study identifies a novel neurosteroid binding site and demonstrates the feasibility of identifying neurosteroid photolabeling sites by using mass spectrometry.


Assuntos
Aziridinas/metabolismo , Neurotransmissores/metabolismo , Marcadores de Fotoafinidade/metabolismo , Pregnanolona/análogos & derivados , Receptores de GABA-A/metabolismo , Sequência de Aminoácidos , Animais , Aziridinas/química , Sítios de Ligação , Encéfalo/metabolismo , Células Cultivadas , Humanos , Immunoblotting/métodos , Modelos Moleculares , Dados de Sequência Molecular , Neurotransmissores/química , Marcadores de Fotoafinidade/química , Pregnanolona/química , Pregnanolona/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores de GABA-A/química
20.
J Biol Chem ; 286(16): 14455-68, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21343285

RESUMO

γ-Aminobutyric acid type A receptors (GABA(A)Rs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X(2) receptors (P2X(2)Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABA(A)Rs. Here, we investigated a possible "dynamic" interaction between GABA(A)Rs and P2X(2)Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X(2)Rs forms a transient complex with GABA(A)Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X(2)Rs and GABA(A)Rs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X(2)Rs results in a Ca(2+)-dependent as well as an apparently Ca(2+)-independent increase in the mobility and an enhanced degradation of GABA(A)Rs, whereas P2X(2)Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X(2)Rs and GABA(A)Rs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA(A)Rs.


Assuntos
Receptores de GABA-A/química , Receptores Purinérgicos P2X2/química , Trifosfato de Adenosina/química , Animais , Cálcio/química , Linhagem Celular , Endocitose , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica , Receptores Purinérgicos/química , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA