Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biomed Sci ; 31(1): 26, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408992

RESUMO

BACKGROUND: Streptococcus pyogenes (group A streptococcus, GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections, such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections. METHODS: Human primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle, cytokine release by human primary monocytes and macrophages was determined. RESULTS: In vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast, moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates, 28 harbored mutations resulting in dysfunctional CovR/S. However, analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations. CONCLUSIONS: Our data demonstrate that strains, which harbor covR/S mutations, interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.


Assuntos
Monócitos , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caspase 8 , Citocinas/genética , Interleucina-18/genética , Interleucina-8 , Monócitos/metabolismo , Streptococcus pyogenes/genética
2.
J Biomed Sci ; 30(1): 52, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430325

RESUMO

BACKGROUND: Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS: Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS: Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS: Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.


Assuntos
Neutrófilos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Proteínas de Bactérias , Exotoxinas/genética
3.
Metabolomics ; 18(6): 39, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687250

RESUMO

INTRODUCTION: Respiratory tract infections are a worldwide health problem for humans and animals. Different cell types produce lipid mediators in response to infections, which consist of eicosanoids like hydroxyeicosatetraenoic acids (HETEs) or oxylipins like hydroxydocosahexaenoic acids (HDHAs). Both substance classes possess immunomodulatory functions. However, little is known about their role in respiratory infections. OBJECTIVES: Here, we aimed to analyze the lipid mediator imprint of different organs of C57BL/6J mice after intranasal mono-infections with Streptococcus pneumoniae (pneumococcus), Staphylococcus aureus or Influenza A virus (IAV) as wells as pneumococcal-IAV co-infection. METHODS: C57BL/6J mice were infected with different pathogens and lungs, spleen, and plasma were collected. Lipid mediators were analyzed using HPLC-MS/MS. In addition, spatial-distribution of sphingosine 1-phosphate (S1P) and ceramide 1-phosphates (C1P) in tissue samples was examined using MALDI-MS-Imaging. The presence of bacterial pathogens in the lung was confirmed via immunofluorescence staining. RESULTS: We found IAV specific changes for different HDHAs and HETEs in mouse lungs as well as enhanced levels of 20-HETE in severe S. aureus infection. Moreover, MALDI-MS-Imaging analysis showed an accumulation of C1P and a decrease of S1P during co-infection in lung and spleen. Long chain C1P was enriched in the red and not in the white pulp of the spleen. CONCLUSIONS: Lipid mediator analysis showed that host synthesis of bioactive lipids is in part specific for a certain pathogen, in particular for IAV infection. Furthermore, MS-Imaging displayed great potential to study infections and revealed changes of S1P and C1P in lungs and spleen of co-infected animals, which was not described before.


Assuntos
Coinfecção , Vírus da Influenza A , Infecções Respiratórias , Animais , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus , Streptococcus pneumoniae , Espectrometria de Massas em Tandem
4.
J Infect Dis ; 222(10): 1702-1712, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32445565

RESUMO

BACKGROUND: In tissue infections, adenosine triphosphate (ATP) is released into extracellular space and contributes to purinergic chemotaxis. Neutrophils are important players in bacterial clearance and are recruited to the site of tissue infections. Pneumococcal infections can lead to uncontrolled hyperinflammation of the tissue along with substantial tissue damage through excessive neutrophil activation and uncontrolled granule release. We aimed to investigate the role of ATP in neutrophil response to pneumococcal infections. METHODS: Primary human neutrophils were exposed to the pneumococcal strain TIGR4 and its pneumolysin-deficient mutant or directly to different concentrations of recombinant pneumolysin. Neutrophil activation was assessed by measurement of secreted azurophilic granule protein resistin and profiling of the secretome, using mass spectrometry. RESULTS: Pneumococci are potent inducers of neutrophil degranulation. Pneumolysin was identified as a major trigger of neutrophil activation. This process is partially lysis independent and inhibited by ATP. Pneumolysin and ATP interact with each other in the extracellular space leading to reduced neutrophil activation. Proteome analyses of the neutrophil secretome confirmed that ATP inhibits pneumolysin-dependent neutrophil activation. CONCLUSIONS: Our findings suggest that despite its cytolytic activity, pneumolysin serves as a potent neutrophil activating factor. Extracellular ATP mitigates pneumolysin-induced neutrophil activation.


Assuntos
Trifosfato de Adenosina/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Infecções Pneumocócicas/metabolismo , Estreptolisinas/efeitos adversos , Proteínas de Bactérias/efeitos adversos , Morte Celular , Humanos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Streptococcus pneumoniae
5.
Adv Exp Med Biol ; 1294: 127-150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33079367

RESUMO

Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.


Assuntos
Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus/patogenicidade , Humanos , Evasão da Resposta Imune , Fatores de Virulência
6.
PLoS Pathog ; 12(7): e1005732, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399650

RESUMO

Host genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, including sepsis and necrotizing soft tissue infections (NSTIs). Our initial studies with conventional mouse strains revealed that host genetic variations and sex differences play an important role in orchestrating the severity, susceptibility and outcomes of NSTIs. To understand the complex genetic architecture of NSTIs, we utilized an unbiased, forward systems genetics approach in an advanced recombinant inbred (ARI) panel of mouse strains (BXD). Through this approach, we uncovered interactions between host genetics, and other non-genetic cofactors including sex, age and body weight in determining susceptibility to NSTIs. We mapped three NSTIs-associated phenotypic traits (i.e., survival, percent weight change, and lesion size) to underlying host genetic variations by using the WebQTL tool, and identified four NSTIs-associated quantitative genetic loci (QTL) for survival on mouse chromosome (Chr) 2, for weight change on Chr 7, and for lesion size on Chr 6 and 18 respectively. These QTL harbor several polymorphic genes. Identification of multiple QTL highlighted the complexity of the host-pathogen interactions involved in NSTI pathogenesis. We then analyzed and rank-ordered host candidate genes in these QTL by using the QTLminer tool and then developed a list of 375 candidate genes on the basis of annotation data and biological relevance to NSTIs. Further differential expression analyses revealed 125 genes to be significantly differentially regulated in susceptible strains compared to their uninfected controls. Several of these genes are involved in innate immunity, inflammatory response, cell growth, development and proliferation, and apoptosis. Additional network analyses using ingenuity pathway analysis (IPA) of these 125 genes revealed interleukin-1 beta network as key network involved in modulating the differential susceptibility to GAS NSTIs.


Assuntos
Fasciite Necrosante/genética , Predisposição Genética para Doença/genética , Infecções dos Tecidos Moles/genética , Infecções dos Tecidos Moles/microbiologia , Infecções Estreptocócicas/genética , Streptococcus pyogenes , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Fenótipo , Locos de Características Quantitativas , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
7.
J Infect Dis ; 214(12): 1876-1883, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683816

RESUMO

BACKGROUND: Neutrophils have been proposed as important contributors to the hyperinflammatory responses that are associated with severe invasive Streptococcus pyogenes infections. In particular, streptococcal surface proteins have been implicated as potent neutrophil activators. Here we explore the impact of streptococcus-secreted factors on neutrophil activation and degranulation. METHODS: Primary human neutrophils were exposed to supernatants prepared from cultures of invasive S. pyogenes strains of varying serotypes in the stationary growth phase. Neutrophil activation was assessed by measurement of secreted resistin, an azurophilic granule marker, and by determination of the secretome profile, using mass spectrometry. RESULTS: Marked variation in resistin release and the neutrophil secretome profile were observed following exposure to different strains. A high resistin response was triggered exclusively by SpeB-negative strains, suggesting that at least 1 stimulatory factor is susceptible to SpeB proteolytic degradation. Further analysis, including proteomics and stimulation analyses, identified phosphoglycerate kinase as a stimulatory factor for neutrophils. CONCLUSIONS: Taken together, results of this study reveal a novel secreted streptococcal factor that, in the absence of SpeB, can trigger neutrophil activation and degranulation. This finding is of interest in light of reports of hypervirulent SpeB-negative S. pyogenes variants present during invasive infections.


Assuntos
Degranulação Celular , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosfoglicerato Quinase/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/imunologia , Células Cultivadas , Voluntários Saudáveis , Humanos , Espectrometria de Massas , Resistina/análise
10.
ACS Biomater Sci Eng ; 10(1): 563-574, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108141

RESUMO

Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive. Synchrotron radiation X-ray microtomography and X-ray fluorescence mapping indicated that peri-implant tissues harvested during aseptic revision of different arthroplasty implants are exposed to Co and Cr in situ. Confocal laser scanning microscopy revealed that macrophage influx is predominant in patient tissue. While in vitro exposure to Cr3+ had only minor effects on monocytes/macrophage phenotype, pathologic concentrations of Co2+ significantly impaired both, monocyte/macrophage phenotype and functionality. High concentrations of Co2+ led to a shift in macrophage subsets and loss of surface markers, including CD14 and CD16. Both Co2+ and Cr3+ impaired macrophage responses to Staphylococcus aureus infection, and particularly, Co2+-exposed macrophages showed decreased phagocytic activity. These findings demonstrate the immunosuppressive effects of locally elevated metal ions on the innate immune response and support further investigations, including studies exploring whether Co2+ and Cr3+ or CoCrMo alloys per se expose the patients to a higher risk of infections post-revision arthroplasty.


Assuntos
Cobalto , Infecções Estafilocócicas , Humanos , Cobalto/toxicidade , Cromo/toxicidade , Staphylococcus aureus , Macrófagos/patologia , Íons/farmacologia , Ligas , Infecções Estafilocócicas/patologia
11.
J Biol Chem ; 287(45): 38178-89, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977243

RESUMO

Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Estrutura Terciária de Proteína , Streptococcus pyogenes/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética , Sítios de Ligação/genética , Carboidratos/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Modelos Moleculares , Mutação , Plasminogênio/química , Plasminogênio/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Streptococcus pyogenes/genética , Ressonância de Plasmônio de Superfície , Difração de Raios X
12.
Microbiol Spectr ; 11(3): e0344722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988458

RESUMO

With 2.56 million deaths worldwide annually, pneumonia is one of the leading causes of death. The most frequent causative pathogens are Streptococcus pneumoniae and influenza A virus. Lately, the interaction between the pathogens, the host, and its microbiome have gained more attention. The microbiome is known to promote the immune response toward pathogens; however, our knowledge on how infections affect the microbiome is still scarce. Here, the impact of colonization and infection with S. pneumoniae and influenza A virus on the structure and function of the respiratory and gastrointestinal microbiomes of mice was investigated. Using a meta-omics approach, we identified specific differences between the bacterial and viral infection. Pneumococcal colonization had minor effects on the taxonomic composition of the respiratory microbiome, while acute infections caused decreased microbial complexity. In contrast, richness was unaffected following H1N1 infection. Within the gastrointestinal microbiome, we found exclusive changes in structure and function, depending on the pathogen. While pneumococcal colonization had no effects on taxonomic composition of the gastrointestinal microbiome, increased abundance of Akkermansiaceae and Spirochaetaceae as well as decreased amounts of Clostridiaceae were exclusively found during invasive S. pneumoniae infection. The presence of Staphylococcaceae was specific for viral pneumonia. Investigation of the intestinal microbiomés functional composition revealed reduced expression of flagellin and rubrerythrin and increased levels of ATPase during pneumococcal infection, while increased amounts of acetyl coenzyme A (acetyl-CoA) acetyltransferase and enoyl-CoA transferase were unique after H1N1 infection. In conclusion, identification of specific taxonomic and functional profiles of the respiratory and gastrointestinal microbiome allowed the discrimination between bacterial and viral pneumonia. IMPORTANCE Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.


Assuntos
Microbioma Gastrointestinal , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Microbiota , Pneumonia Viral , Animais , Camundongos , Streptococcus pneumoniae/fisiologia , Bactérias
13.
J Bacteriol ; 194(14): 3618-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544273

RESUMO

Streptococcus pyogenes (group A streptococcus [GAS]) is a highly virulent Gram-positive bacterium. For successful infection, GAS expresses many virulence factors, which are clustered together with transcriptional regulators in distinct genomic regions. Ralp3 is a central regulator of the ERES region. In this study, we investigated the role of Ralp3 in GAS M49 pathogenesis. The inactivation of Ralp3 resulted in reduced attachment to and internalization into human keratinocytes. The Δralp3 mutant failed to survive in human blood and serum, and the hyaluronic acid capsule was slightly decreased. In addition, the mutant showed a lower binding capacity to human plasminogen, and the SpeB activity was significantly decreased. Complementation of the Δralp3 mutant restored the wild-type phenotype. The transcriptome and quantitative reverse transcription-PCR analysis of the serotype M49 GAS strain and its isogenic Δralp3 mutant identified 16 genes as upregulated, and 43 genes were found to be downregulated. Among the downregulated genes, there were open reading frames encoding proteins involved in metabolism (e.g., both lac operons and the fru operon), genes encoding lantibiotics (e.g., the putative salivaricin operon), and ORFs encoding virulence factors (such as the whole Mga core regulon and further genes under Mga control). In summary, the ERES region regulator Ralp3 is an important serotype-specific transcriptional regulator for virulence and metabolic control.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Ácido Hialurônico , Mutação , Fenótipo , RNA Bacteriano , Transcriptoma , Virulência , Fatores de Virulência/genética
14.
J Biol Chem ; 286(24): 21612-22, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21521694

RESUMO

The entry into epithelial cells and the prevention of primary immune responses are a prerequisite for a successful colonization and subsequent infection of the human host by Streptococcus pyogenes (group A streptococci, GAS). Here, we demonstrate that interaction of GAS with plasminogen promotes an integrin-mediated internalization of the bacteria into keratinocytes, which is independent from the serine protease activity of potentially generated plasmin. α(1)ß(1)- and α(5)ß(1)-integrins were identified as the major keratinocyte receptors involved in this process. Inhibition of integrin-linked kinase (ILK) expression by siRNA silencing or blocking of PI3K and Akt with specific inhibitors, reduced the GAS M49-plasminogen/plasmin-mediated invasion of keratinocytes. In addition, blocking of actin polymerization significantly reduced GAS internalization into keratinocytes. Altogether, these results provide a first model of plasminogen-mediated GAS invasion into keratinocytes. Furthermore, we demonstrate that plasminogen binding protects the bacteria against macrophage killing.


Assuntos
Bacteriocinas/metabolismo , Integrinas/metabolismo , Queratinócitos/metabolismo , Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Streptococcus pyogenes/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Fibrinolisina/metabolismo , Humanos , Integrina alfa1beta1/metabolismo , Integrina alfa5beta1/metabolismo , Queratinócitos/microbiologia , Macrófagos/microbiologia , Modelos Biológicos , Modelos Genéticos , Ligação Proteica
15.
Artigo em Inglês | MEDLINE | ID: mdl-22750867

RESUMO

The extracellular protein Epf from Streptococcus pyogenes is important for streptococcal adhesion to human epithelial cells. However, Epf has no sequence identity to any protein of known structure or function. Thus, several predicted domains of the 205 kDa protein Epf were cloned separately and expressed in Escherichia coli. The N-terminal domain of Epf was crystallized in space groups P2(1) and P2(1)2(1)2(1) in the presence of the protease chymotrypsin. Mass spectrometry showed that the species crystallized corresponded to a fragment comprising residues 52-357 of Epf. Complete data sets were collected to 2.0 and 1.6 Šresolution, respectively, at the Australian Synchrotron.


Assuntos
Adesinas Bacterianas/química , Proteínas de Bactérias/química , Streptococcus pyogenes/química , Adesinas Bacterianas/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X
16.
J Proteomics ; 250: 104387, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34600154

RESUMO

Viral infections facilitate bacterial trafficking to the lower respiratory tract resulting in bacterial-viral co-infections. Bacterial dissemination to the lower respiratory tract is enhanced by influenza A virus induced epithelial cell damage and dysregulation of immune responses. Epithelial cells act as a line of defense and detect pathogens by a high variety of pattern recognition receptors. The post-translational modification ubiquitin is involved in almost every cellular process. Moreover, ubiquitination contributes to the regulation of host immune responses, influenza A virus uncoating and transport within host cells. We applied proteomics with a special focus on ubiquitination to assess the impact of single bacterial and viral as well as bacterial-viral co-infections on bronchial epithelial cells. We used Tandem Ubiquitin Binding Entities to enrich polyubiquitinated proteins and assess changes in the ubiquitinome. Infecting 16HBE cells with Streptococcus pyogenes led to an increased abundance of proteins related to mitochondrial translation and energy metabolism in proteome and ubiquitinome. In contrast, influenza A virus infection mainly altered the ubiquitinome. Co-infections had no additional impact on protein abundances or affected pathways. Changes in protein abundance and enriched pathways were assigned to imprints of both infecting pathogens. SIGNIFICANCE: Viral and bacterial co-infections of the lower respiratory tract are a burden for health systems worldwide. Therefore, it is necessary to elucidate the complex interplay between the host and the infecting pathogens. Thus, we analyzed the proteome and the ubiquitinome of co-infected bronchial epithelial cells to elaborate a potential synergism of the two infecting organisms. The results presented in this work can be used as a starting point for further analyses.


Assuntos
Proteoma , Ubiquitina , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno , Proteoma/metabolismo , Proteômica/métodos , Ubiquitina/metabolismo , Ubiquitinação
17.
J Innate Immun ; 14(3): 192-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515145

RESUMO

Epithelial cells play a crucial role in detection of the pathogens as well as in initiation of the host immune response. Streptococcus pneumoniae (pneumococcus) is a typical colonizer of the human nasopharynx, which can disseminate to the lower respiratory tract and subsequently cause severe invasive diseases such as pneumonia, sepsis, and meningitis. Hydrogen peroxide (H2O2) is produced by pneumococci as a product of the pyruvate oxidase SpxB. However, its role as a virulence determinant in pneumococcal infections of the lower respiratory tract is not well understood. In this study, we investigated the role of pneumococcal-derived H2O2 in initiating epithelial cell death by analyzing the interplay between 2 key cell death pathways, namely, apoptosis and pyroptosis. We demonstrate that H2O2 primes as well as activates the NLRP3 inflammasome and thereby mediates IL-1ß production and release. Furthermore, we show that pneumococcal H2O2 causes cell death via the activation of both apoptotic as well as pyroptotic pathways which are mediated by the activation of caspase-3/7 and caspase-1, respectively. However, H2O2-mediated IL-1ß release itself occurs mainly via apoptosis.


Assuntos
Inflamassomos , Infecções Pneumocócicas , Caspase 1/metabolismo , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Streptococcus pneumoniae
18.
J Innate Immun ; 14(5): 569-580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35249041

RESUMO

Influenza A Virus (IAV), Staphylococcus aureus (staphylococci), and Streptococcus pneumoniae (pneumococci) are leading viral and bacterial causes of pneumonia. Dendritic cells (DCs) are present in the lower respiratory tract. They are characterized by low expression of co-stimulatory molecules, including CD80 and CD86 and high capacity of antigen uptake. Subsequently, DCs upregulate co-stimulatory signals and cytokine secretion to effectively induce T-cell priming. Here, we investigated these processes in response to bacterial and viral single as well as coinfections using human monocyte-derived (mo)DCs. Irrespective of single or coinfections, moDCs matured in response to IAV and/or staphylococcal infections, secreted a wide range of cytokines, and activated CD4+, CD8+ as well as double-negative T cells. In contrast, pneumococcal single and coinfections impaired moDC maturation, which was characterized by low expression of CD80 and CD86, downregulated expression of CD40, and a mild cytokine release resulting in abrogated CD4+ T-cell activation. These actions were attributed to the cholesterol-dependent cytotoxin pneumolysin (Ply). Infections with a ply-deficient mutant resulted in restored moDC maturation and exclusive CD4+ T-cell activation. These findings show that Ply has important immunomodulatory functions, supporting further investigations in specific modalities of Ply-DC interplay.


Assuntos
Coinfecção , Vírus da Influenza A , Proteínas de Bactérias , Linfócitos T CD4-Positivos , Coinfecção/metabolismo , Citocinas/metabolismo , Células Dendríticas , Humanos , Streptococcus pneumoniae , Estreptolisinas
19.
J Innate Immun ; : 1-17, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843205

RESUMO

The coagulation and contact systems are parts of the innate immune system as they prevent bleeding and dissemination of pathogens and also contribute to microbial killing by inflammatory reactions and the release of antimicrobial peptides. Here, we investigated the influence of Streptococcus pneumoniae on the coagulation and contact system. S. pneumoniae (pneumococci), but no other investigated streptococcal species, impairs coagulation of blood by autolysis and release of pneumolysin. Defective blood coagulation results from the lysis of tissue factor-producing mononuclear cells and their procoagulant microvesicles, which are the main trigger for blood coagulation during sepsis. In addition, pneumolysin binds coagulation and contact system factors, but this does not result in activation. Thus, pneumococci modulate activation of the coagulation system by releasing pneumolysin, which could potentiate lung injury during pneumonia.

20.
Cells ; 11(10)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626674

RESUMO

Group B streptococci (GBS) cause a range of invasive maternal-fetal diseases during pregnancy and post-partum. However, invasive infections in non-pregnant adults are constantly increasing. These include sepsis and streptococcal toxic shock syndrome, which are often complicated by systemic coagulation and thrombocytopenia. GBS express a hyper-hemolytic ornithine rhamnolipid pigment toxin with cytolytic and coagulatory activity. Here, we investigated the effects of GBS pigment on human platelets. Infections of platelets with pigmented GBS resulted initially in platelet activation, followed by necrotic cell death. Thus, this study shows that GBS pigment kills human platelets.


Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Adulto , Feminino , Hemólise , Humanos , Pigmentação , Ativação Plaquetária , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA