Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 057001, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364128

RESUMO

We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal-metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal-metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection. We show that these processes are relevant also far above the superconducting gap and that signatures of Coulomb blockade may reoccur at high bias while they are absent for small bias in the strong-coupling regime. Our experimental findings agree with simulations using a rate equation approach in combination with the full counting statistics of multiple Andreev reflection.

2.
Phys Rev Lett ; 122(16): 169901, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075036

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.190502.

3.
Phys Rev Lett ; 118(20): 200502, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581790

RESUMO

Pure multiparticle quantum states are called absolutely maximally entangled if all reduced states obtained by tracing out at least half of the particles are maximally mixed. We provide a method to characterize these states for a general multiparticle system. With that, we prove that a seven-qubit state whose three-body marginals are all maximally mixed, or equivalently, a pure ((7,1,4))_{2} quantum error correcting code, does not exist. Furthermore, we obtain an upper limit on the possible number of maximally mixed three-body marginals and identify the state saturating the bound. This solves the seven-particle problem as the last open case concerning maximally entangled states of qubits.

4.
Phys Rev Lett ; 117(19): 190502, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27858444

RESUMO

The Schmidt coefficients capture all entanglement properties of a pure bipartite state and therefore determine its usefulness for quantum information processing. While the quantification of the corresponding properties in mixed states is important both from a theoretical and a practical point of view, it is considerably more difficult, and methods beyond estimates for the concurrence are elusive. In particular this holds for a quantitative assessment of the most valuable resource, the forms of entanglement that can only exist in high-dimensional systems. We derive a framework for lower bounding the appropriate measure of entanglement, the so-called G-concurrence, through few local measurements. Moreover, we show that these bounds have relevant applications also for multipartite states.

5.
Phys Rev Lett ; 114(14): 140402, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910095

RESUMO

A striking result from nonrelativistic quantum mechanics is the monogamy of entanglement, which states that a particle can be maximally entangled only with one other party, not with several ones. While there is the exact quantitative relation for three qubits and also several inequalities describing monogamy properties, it is not clear to what extent exact monogamy relations are a general feature of quantum mechanics. We prove that in all many-qubit systems there exist strict monogamy laws for quantum correlations. They come about through the curious relationship between the nonrelativistic quantum mechanics of qubits and Minkowski space. We elucidate the origin of entanglement monogamy from this symmetry perspective and provide recipes to construct new families of such equalities.

6.
Phys Rev Lett ; 111(10): 100503, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166642

RESUMO

Among all entanglement measures negativity arguably is the best known and most popular tool to quantify bipartite quantum correlations. It is easily computed for arbitrary states of a composite system and can therefore be applied to discuss entanglement in an ample variety of situations. However, as opposed to logarithmic negativity, its direct physical meaning has not been pointed out yet. We show that the negativity can be viewed as an estimator of how many degrees of freedom of two subsystems are entangled. As it is possible to give lower bounds for the negativity even in a device-independent setting, it is the appropriate quantity to certify quantumness of both parties in a bipartite system and to determine the minimum number of dimensions that contribute to the quantum correlations.

7.
Phys Rev Lett ; 108(2): 020502, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324663

RESUMO

The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

8.
Phys Rev Lett ; 108(23): 230502, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003929

RESUMO

Multipartite entanglement is a key concept in quantum mechanics for which, despite the experimental progress in entangling three or more quantum devices, there is still no general quantitative theory that exists. In order to characterize the robustness of multipartite entanglement, one often employs generalized Werner states, that is, mixtures of a Greenberger-Horne-Zeilinger (GHZ) state and the completely unpolarized state. While two-qubit Werner states have been instrumental for various important advancements in quantum information, as of now there is no quantitative account for such states of more than two qubits. By using the GHZ symmetry introduced recently, we find exact results for tripartite entanglement in three-qubit generalized Werner states and, moreover, the entire family of full-rank mixed states that share the same symmetries.

9.
Sci Rep ; 2: 942, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23267431

RESUMO

Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.

10.
Phys Rev Lett ; 96(2): 028501, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486661

RESUMO

We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

11.
Phys Rev Lett ; 97(26): 260502, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280411

RESUMO

We provide a complete analysis of mixed three-qubit states composed of a Greenberger-Horne-Zeilinger state and a W state orthogonal to the former. We present optimal decompositions and convex roofs for the three-tangle. Further, we provide an analytical method to decide whether or not an arbitrary rank-2 state of three qubits has vanishing three-tangle. These results highlight intriguing differences compared to the properties of two-qubit mixed states, and may serve as a quantitative reference for future studies of entanglement in multipartite mixed states. By studying the Coffman-Kundu-Wootters inequality we find that, while the amounts of inequivalent entanglement types strictly add up for pure states, this "monogamy" can be lifted for mixed states by virtue of vanishing tangle measures.

12.
Phys Rev Lett ; 91(2): 027902, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12906509

RESUMO

The implementation of a quantum computer requires the realization of a large number of N-qubit unitary operations which represent the possible oracles or which are part of the quantum algorithm. Until now there have been no standard ways to uniformly generate whole classes of N-qubit gates. We develop a method to generate arbitrary controlled phase-shift operations with a single network of one-qubit and two-qubit operations. This kind of network can be adapted to various physical implementations of quantum computing and is suitable to realize the Deutsch-Jozsa algorithm as well as Grover's search algorithm.

13.
Phys Rev Lett ; 90(2): 028301, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12570583

RESUMO

Non-Abelian holonomies can be generated and detected in certain superconducting nanocircuits. Here we consider an example where the non-Abelian operations are related to the adiabatic charge dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic charge pumping and as an implementation of a quantum computer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA