Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(40): 24825-24836, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958677

RESUMO

The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner. To interrogate this functional dichotomy, the intracellular fates of two naturally occurring misfolded N-glycosylated variants of human alpha1-antitrypsin (AAT), Null Hong Kong (NHK), and Z (ATZ), in Man1b1 knockout HEK293T cells were monitored in response to mutated or truncated forms of transfected Man1b1. As expected, the conventional catalytic system requires an intact active site in the Man1b1 luminal domain. In contrast, the unconventional system is under the control of an evolutionarily extended N-terminal cytoplasmic tail. Also, N-glycans attached to misfolded AAT are not required for accelerated degradation mediated by the unconventional system, further demonstrating its catalysis-independent nature. We also established that both systems accelerate the proteasomal degradation of NHK in metabolic pulse-chase labeling studies. Taken together, these results have identified the previously unrecognized regulatory capacity of the Man1b1 cytoplasmic tail and provided insight into the functional dichotomy of Man1b1 as a component in the mammalian proteostasis network.


Assuntos
Manosidases/metabolismo , alfa 1-Antitripsina/química , Biocatálise , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Manosidases/química , Manosidases/genética , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
2.
Mol Psychiatry ; 25(10): 2504-2516, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30696942

RESUMO

Neurons are sensitive to changes in the dosage of many genes, especially those regulating synaptic functions. Haploinsufficiency of SHANK3 causes Phelan-McDermid syndrome and autism, whereas duplication of the same gene leads to SHANK3 duplication syndrome, a disorder characterized by neuropsychiatric phenotypes including hyperactivity and bipolar disorder as well as epilepsy. We recently demonstrated the functional modularity of Shank3, which suggests that normalizing levels of Shank3 itself might be more fruitful than correcting pathways that function downstream of it for treatment of disorders caused by alterations in SHANK3 dosage. To identify upstream regulators of Shank3 abundance, we performed a kinome-wide siRNA screen and identified multiple kinases that potentially regulate Shank3 protein stability. Interestingly, we discovered that several kinases in the MEK/ERK2 pathway destabilize Shank3 and that genetic deletion and pharmacological inhibition of ERK2 increases Shank3 abundance in vivo. Mechanistically, we show that ERK2 binds Shank3 and phosphorylates it at three residues to promote its poly-ubiquitination-dependent degradation. Altogether, our findings uncover a druggable pathway as a potential therapeutic target for disorders with reduced SHANK3 dosage, provide a rich resource for studying Shank3 regulation, and demonstrate the feasibility of this approach for identifying regulators of dosage-sensitive genes.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas do Tecido Nervoso/metabolismo , Estabilidade Proteica , Interferência de RNA , Animais , Linhagem Celular Tumoral , Transtornos Cromossômicos/genética , Feminino , Deleção de Genes , Haploinsuficiência , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
3.
J Biol Chem ; 289(17): 11844-11858, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24627495

RESUMO

Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes.


Assuntos
Complexo de Golgi/enzimologia , Manosidases/metabolismo , Biossíntese de Proteínas , Controle de Qualidade , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Células HeLa , Humanos , Manosidases/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
4.
J Biol Chem ; 287(15): 12195-203, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22371497

RESUMO

O-Linked ß-N-acetylglucosamine, or O-GlcNAc, is a dynamic post-translational modification that cycles on and off serine and threonine residues of nucleocytoplasmic proteins. The O-GlcNAc modification shares a complex relationship with phosphorylation, as both modifications are capable of mutually inhibiting the occupation of each other on the same or nearby amino acid residue. In addition to diabetes, cancer, and neurodegenerative diseases, O-GlcNAc appears to play a significant role in cell growth and cell cycle progression, although the precise mechanisms are still not well understood. A recent study also found that all four core nucleosomal histones (H2A, H2B, H3, and H4) are modified with O-GlcNAc, although no specific sites on H3 were reported. Here, we describe that histone H3, a protein highly phosphorylated during mitosis, is modified with O-GlcNAc. Several biochemical assays were used to validate that H3 is modified with O-GlcNAc. Mass spectrometry analysis identified threonine 32 as a novel O-GlcNAc site. O-GlcNAc was detected at higher levels on H3 during interphase than mitosis, which inversely correlated with phosphorylation. Furthermore, increased O-GlcNAcylation was observed to reduce mitosis-specific phosphorylation at serine 10, serine 28, and threonine 32. Finally, inhibiting OGA, the enzyme responsible for removing O-GlcNAc, hindered the transition from G2 to M phase of the cell cycle, displaying a phenotype similar to preventing mitosis-specific phosphorylation on H3. Taken together, these data indicate that O-GlcNAcylation regulates mitosis-specific phosphorylations on H3, providing a mechanistic switch that orchestrates the G2-M transition of the cell cycle.


Assuntos
Acetilglucosamina/fisiologia , Histonas/metabolismo , Mitose , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Fase G2 , Glicosilação , Células HeLa , Histonas/química , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosforilação , Treonina/metabolismo
5.
Cell Chem Biol ; 30(1): 1-2, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669468

RESUMO

In this issue of Cell Chemical Biology, Sun et al. utilize computational and protein expression analyses, plus pharmacological proteostasis network activation, to simultaneously correct two genetic diseases linked to a single protein rather than modify the responsible DNA.


Assuntos
Proteínas , Proteostase , DNA
6.
Hepatology ; 50(1): 275-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19444872

RESUMO

UNLABELLED: Inappropriate accumulation of the misfolded Z variant of alpha1-antitrypsin in the hepatocyte endoplasmic reticulum (ER) is a risk factor for the development of end-stage liver disease. However, the genetic and environmental factors that contribute to its etiology are poorly understood. ER mannosidase I (ERManI) is a quality control factor that plays a critical role in the sorting and targeting of misfolded glycoproteins for proteasome-mediated degradation. In this study, we tested whether genetic variations in the human ERManI gene influence the age at onset of end-stage liver disease in patients homozygous for the Z allele (ZZ). We sequenced all 13 exons in a group of unrelated Caucasian ZZ transplant recipients with different age at onset of the end-stage liver disease. Homozygosity for the minor A allele at 2484G/A (refSNP ID number rs4567) in the 3'-untranslated region was prevalent in the infant ZZ patients. Functional studies indicated that rs4567(A), but not rs4567(G), suppresses ERManI translation under ER stress conditions. CONCLUSION: These findings suggest that the identified single-nucleotide polymorphism can accelerate the onset of the end-stage liver disease associated with alpha1-antitrypsin deficiency and underscore the contribution of biosynthetic quality control as a modifier of genetic disease.


Assuntos
Falência Hepática/genética , Manosidases/genética , Polimorfismo de Nucleotídeo Único/genética , Biossíntese de Proteínas , Deficiência de alfa 1-Antitripsina/genética , Adolescente , Adulto , Idade de Início , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
7.
J Clin Invest ; 130(8): 4118-4132, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32597833

RESUMO

Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer. Mutagenesis experiments showed that the second luminal loop of CLN6 is required for the interaction of CLN6 with the enzymes but dispensable for interaction with CLN8. In vitro and in vivo studies showed that CLN6 deficiency results in inefficient ER export of lysosomal enzymes and diminished levels of the enzymes at the lysosome. Mice lacking both CLN6 and CLN8 did not display aggravated pathology compared with the single deficiencies, indicating that the EGRESS complex works as a functional unit. These results identify CLN6 and the EGRESS complex as key players in lysosome biogenesis and shed light on the molecular etiology of Batten disease caused by defects in CLN6.


Assuntos
Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Lisossomos/enzimologia , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Lisossomos/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Transporte Proteico/genética
8.
J Med Chem ; 50(22): 5357-63, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17918823

RESUMO

The Z mutant of alpha1-antitrypsin (Glu342Lys) causes a domain swap and the formation of intrahepatic polymers that aggregate as inclusions and predispose the homozygote to cirrhosis. We have identified an allosteric cavity that is distinct from the interface involved in polymerization for rational structure-based drug design to block polymer formation. Virtual ligand screening was performed on 1.2 million small molecules and 6 compounds were identified that reduced polymer formation in vitro. Modeling the effects of ligand binding on the cavity and re-screening the library identified an additional 10 compounds that completely blocked polymerization. The best antagonists were effective at ratios of compound to Z alpha1-antitrypsin of 2.5:1 and reduced the intracellular accumulation of Z alpha1-antitrypsin by 70% in a cell model of disease. Identifying small molecules provides a novel therapy for the treatment of liver disease associated with the Z allele of alpha1-antitrypsin.


Assuntos
alfa 1-Antitripsina/metabolismo , Sítio Alostérico , Animais , Antitrombinas/química , Sítios de Ligação , Biopolímeros , Linhagem Celular Tumoral , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Modelos Moleculares , Mutação , Neuropeptídeos/química , Neuropeptídeos/genética , Ligação Proteica , Conformação Proteica , Serpinas/química , Serpinas/genética , Relação Estrutura-Atividade , alfa 1-Antiquimotripsina/química , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo , Neuroserpina
10.
Mol Biol Cell ; 13(8): 2639-50, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12181335

RESUMO

Protein folding and quality control in the early secretory pathway function as posttranslational checkpoints in eukaryote gene expression. Herein, an aberrant form of the hepatic secretory protein alpha1-antitrypsin was stably expressed in a human embryonic kidney cell line to elucidate the mechanisms by which glycoprotein endoplasmic reticulum-associated degradation (GERAD) is administered in cells from higher eukaryotes. After biosynthesis, genetic variant PI Z underwent alternative phases of secretion and degradation, the latter of which was mediated by the proteasome. Degradation required release from calnexin- and asparagine-linked oligosaccharide modification by endoplasmic reticulum mannosidase I, the latter of which occurred as PI Z was bound to the molecular chaperone grp78/BiP. That a distinct GERAD program operates in human embryonic kidney cells was supported by the extent of PI Z secretion, apparent lack of polymerization, inability of calnexin to participate in the degradation process, and sequestration of the glycoprotein folding sensor UDP-glucose:glycoprotein glucosyltransferase in the Golgi complex. Because UDP-glucose:glycoprotein glucosyltransferase sustains calnexin binding, its altered distribution is consistent with a GERAD program that hinders the reentry of substrates into the calnexin cycle, allowing grp78/BiP to partner with a lectin, other than calnexin, in the recognition of a two-component GERAD signal to facilitate substrate recruitment. How the processing of a mutant protein, rather than the mutation itself, can contribute to disease pathogenesis, is discussed.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico , Transporte Proteico/fisiologia , alfa 1-Antitripsina/metabolismo , Alcaloides/metabolismo , Animais , Calnexina/metabolismo , Sequência de Carboidratos , Proteínas de Transporte/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/metabolismo , Glucosiltransferases/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos/metabolismo , Oligopeptídeos , Complexo de Endopeptidases do Proteassoma , Dobramento de Proteína , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Inibidores de Serina Proteinase/metabolismo , Uridina Difosfato Glucose/metabolismo
11.
12.
Elife ; 3: e01694, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24737860

RESUMO

Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI: http://dx.doi.org/10.7554/eLife.01694.001.


Assuntos
Estresse do Retículo Endoplasmático , Fígado/fisiopatologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Animais , Morte Celular , Células Cultivadas , Hepatócitos/fisiologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
13.
Chem Biol ; 20(3): 298-300, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23521788

RESUMO

Because proteostasis networks manage the cellular proteome, their pharmacological manipulation might correct pathologies associated with numerous protein misfolding diseases. In this issue of Chemistry & Biology, Tong Ong and colleagues identify a novel biosynthetic juncture for glucocerebrosidase as a site for therapeutic intervention in Gaucher's disease.

14.
Mol Biol Cell ; 24(8): 1111-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23427261

RESUMO

Endoplasmic reticulum (ER) α-1, 2-mannosidase (ERManI) contributes to ER-associated protein degradation (ERAD) by initiating the formation of degradation signals on misfolded N-linked glycoproteins. Despite its inferred intracellular location, we recently discovered that the mammalian homologue is actually localized to the Golgi complex. In the present study, the functional role of Golgi-situated ERManI was investigated. Mass spectrometry analysis and coimmunoprecipitation (co-IP) identified a direct interaction between ERManI and γ-COP, the gamma subunit of coat protein complex I (COPI) that is responsible for Golgi-to-ER retrograde cargo transport. The functional relationship was validated by the requirement of both ERManI and γ-COP to support efficient intracellular clearance of the classical ERAD substrate, null Hong Kong (NHK). In addition, site-directed mutagenesis of suspected γ-COP-binding motifs in the cytoplasmic tail of ERManI was sufficient to disrupt the physical interaction and ablate NHK degradation. Moreover, a physical interaction between NHK, ERManI, and γ-COP was identified by co-IP and Western blotting. RNA interference-mediated knockdown of γ-COP enhanced the association between ERManI and NHK, while diminishing the efficiency of ERAD. Based on these findings, a model is proposed in which ERManI and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ERAD substrates back to the ER.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/enzimologia , Manosidases/metabolismo , Subunidades Proteicas/metabolismo , Substituição de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Células HeLa , Humanos , Células MCF-7 , Manosidases/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Transporte Proteico
15.
PLoS One ; 8(8): e72829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940818

RESUMO

The MAN1B1 gene product, designated ER alpha-1, 2-mannosidase (ERManI), is an enzyme localized in the Golgi complex of mammalian cells. By functioning as a "gate keeper" to prevent the inappropriate secretion of misfolded glycoproteins, it plays a critical role in maintaining protein homeostasis in the mammalian secretory pathway. In the present study, we identified that a conserved motif within the 3'UTR of ERManI is a target of miR-125b, a microRNA frequently down-regulated in numerous types of cancers, including hepatocellular carcinoma (HCC). As predicted, the expression of ERManI is significantly elevated in HCC, as measured by immunohistochemistry in a liver spectrum tissue microarray. Additional analyses using several hepatoma cell lines demonstrated that the elevated ERManI inversely correlates with a diminished intracellular concentration of miR-125b. Moreover, functional studies indicated that RNAi-mediated knock-down of endogenous ERManI was sufficient to inhibit proliferation, migration, and invasion of hepatoma cells. These phenotypical changes occurred in the absence of alterations in global glycoprotein secretion or ER-stress status. Together, these results revealed a novel post-transcriptional regulatory mechanism for ERManI and implied that this molecule contributes to the regulation of carcinogenesis in HCC independent of its function in glycoprotein quality control.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Neoplasias Hepáticas/genética , Manosidases/fisiologia , MicroRNAs/fisiologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Células MCF-7 , Fenótipo
16.
Methods Enzymol ; 499: 1-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21683246

RESUMO

Biological checkpoints are known to function in the cellular nucleus to monitor the integrity of inherited genetic information. It is now understood that posttranslational checkpoint systems operate in numerous biosynthetic compartments where they orchestrate the surveillance of encoded protein structures. This is particularly true for the serpins where opposing, but complementary, systems operate in the early secretory pathway to initially facilitate protein folding and then selectively target the misfolded proteins for proteolytic elimination. A current challenge is to elucidate how this posttranslational checkpoint can modify the severity of numerous loss-of-function and gain-of-toxic-function diseases, some of which are caused by mutant serpins. This chapter provides a description of the experimental methodology by which the fate of a newly synthesized serpin is monitored, and how the processing of asparagine-linked oligosaccharides helps to facilitate both the protein folding and disposal events.


Assuntos
Retículo Endoplasmático/metabolismo , Serpinas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Dobramento de Proteína , Serpinas/genética
17.
Mol Biol Cell ; 22(16): 2810-22, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21697506

RESUMO

The Golgi complex has been implicated as a possible component of endoplasmic reticulum (ER) glycoprotein quality control, although the elucidation of its exact role is lacking. ERManI, a putative ER resident mannosidase, plays a rate-limiting role in generating a signal that targets misfolded N-linked glycoproteins for ER-associated degradation (ERAD). Herein we demonstrate that the endogenous human homologue predominantly resides in the Golgi complex, where it is subjected to O-glycosylation. To distinguish the intracellular site where the glycoprotein ERAD signal is generated, a COPI-binding motif was appended to the N terminus of the recombinant protein to facilitate its retrograde translocation back to the ER. Partial redistribution of the modified ERManI was observed along with an accelerated rate at which N-linked glycans of misfolded α1-antitrypsin variant NHK were trimmed. Despite these observations, the rate of NHK degradation was not accelerated, implicating the Golgi complex as the site for glycoprotein ERAD substrate tagging. Taken together, these data provide a potential mechanistic explanation for the spatial separation by which glycoprotein quality control components operate in mammalian cells.


Assuntos
Glicoproteínas/metabolismo , Complexo de Golgi/metabolismo , Manosidases/metabolismo , Transporte Proteico , Proteólise , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Sítios de Ligação , Linhagem Celular , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Manosidases/química , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Solubilidade
18.
Proc Am Thorac Soc ; 7(6): 376-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21030516

RESUMO

α(1)-Antitrypsin (AAT) secreted from hepatocytes is an inhibitor of neutrophil elastase. Its normal circulating concentration functions to maintain the elasticity of the lung by preventing the hydrolytic destruction of elastin fibers. Severely diminished circulating concentrations of AAT, resulting from the impaired secretion of genetic variants that exhibit distinct polypeptide folding defects, can function as an etiologic agent for the development of chronic obstructive pulmonary disease. In addition, the inappropriate accumulation of structurally aberrant AAT within the hepatocyte endoplasmic reticulum can contribute to the etiology of liver disease. This article focuses on the discovery and characterization of a biosynthetic quality control system that contributes to the secretion of AAT by first facilitating its proper structural maturation, and then by orchestrating the selective elimination of those molecules that fail to attain structural maturation. Mechanistic elucidation of these interconnected quality control events recently led to the identification of an underlying genetic modifier capable of accelerating the onset of end-stage liver disease by impairing the efficiency of an initial step in the protein disposal process.


Assuntos
Retículo Endoplasmático/metabolismo , Hepatopatias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , alfa 1-Antitripsina/metabolismo , Humanos , Transdução de Sinais
20.
J Cell Sci ; 122(Pt 7): 976-84, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19258393

RESUMO

The secretory pathway provides a physical route through which only correctly folded gene products are delivered to the eukaryotic cell surface. The efficiency of endoplasmic reticulum (ER)-associated degradation (ERAD), which orchestrates the clearance of structurally aberrant proteins under basal conditions, is boosted by the unfolded protein response (UPR) as one of several means to relieve ER stress. However, the underlying mechanism that links the two systems in higher eukaryotes has remained elusive. Herein, the results of transient expression, RNAi-mediated knockdown and functional studies demonstrate that the transcriptional elevation of EDEM1 boosts the efficiency of glycoprotein ERAD through the formation of a complex that suppresses the proteolytic downregulation of ER mannosidase I (ERManI). The results of site-directed mutagenesis indicate that this capacity does not require that EDEM1 possess inherent mannosidase activity. A model is proposed in which ERManI, by functioning as a downstream effector target of EDEM1, represents a checkpoint activation paradigm by which the mammalian UPR coordinates the boosting of ERAD.


Assuntos
Regulação para Baixo , Retículo Endoplasmático/enzimologia , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Manosidases/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Estabilidade Enzimática , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Ligação Proteica , Transfecção , alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA