Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 123(23): 231107, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868462

RESUMO

The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).

2.
Opt Express ; 23(15): 19417-31, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367601

RESUMO

We use doubly phase modulated light to measure both the length and the linewidth of an optical resonator with high precision. The first modulation is at RF frequencies and is set near a multiple of the free spectral range, whereas the second modulation is at audio frequencies to eliminate offset errors at DC. The light in transmission or in reflection of the optical resonator is demodulated while sweeping the RF frequency over the optical resonance. We derive expressions for the demodulated power in transmission, and show that the zero crossings of the demodulated signal in transmission serve as a precise measure of the cavity linewidth at half maximum intensity. We demonstrate the technique on two resonant cavities, with lengths 16 m and a 4 km, and achieve an absolute length accuracy as low as 70 ppb. The cavity width for the 16 m cavity was determined with an accuracy of approximately 6000 ppm. Through an analysis of the systematic errors we show that this result could be substantially improved with the reduction of technical sources of uncertainty.

3.
Opt Express ; 22(17): 21106-21, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25321310

RESUMO

Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations.

4.
Opt Express ; 21(16): 19047-60, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938820

RESUMO

Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative fluctuations between the squeezed quadrature angle and the measured quadrature (sometimes called squeezing angle jitter or phase noise) are one limit to the noise reduction that can be achieved. We present calculations of several effects that lead to quadrature fluctuations, and use these estimates to account for the observed quadrature fluctuations in a LIGO gravitational wave detector. We discuss the implications of this work for quantum enhanced advanced detectors and even more sensitive third generation detectors.

5.
J Mol Cell Cardiol ; 50(4): 642-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21256850

RESUMO

The atrioventricular conduction axis, located in the septal component of the atrioventricular junctions, is arguably the most complex structure in the heart. It fulfils a multitude of functions, including the introduction of a delay between atrial and ventricular systole and backup pacemaking. Like any other multifunctional tissue, complexity is a key feature of this specialised tissue in the heart, and this complexity is both anatomical and electrophysiological, with the two being inextricably linked. We used quantitative PCR, histology and immunohistochemistry to analyse the axis from six human subjects. mRNAs for ~50 ion and gap junction channels, Ca(2+)-handling proteins and markers were measured in the atrial muscle (AM), a transitional area (TA), inferior nodal extension (INE), compact node (CN), penetrating bundle (PB) and ventricular muscle (VM). When compared to the AM, we found a lower expression of Na(v)1.5, K(ir)2.1, Cx43 and ANP mRNAs in the CN for example, but a higher expression of HCN1, HCN4, Ca(v)1.3, Ca(v)3.1, K(ir)3.4, Cx40 and Tbx3 mRNAs. Expression of some related proteins was in agreement with the expression of the corresponding mRNAs. There is a complex and heterogeneous pattern of expression of ion and gap junction channels and Ca(2+)-handling proteins in the human atrioventricular conduction axis that explains the function of this crucial pathway.


Assuntos
Nó Atrioventricular/citologia , Nó Atrioventricular/metabolismo , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/metabolismo , Arritmias Cardíacas/metabolismo , Canais de Cálcio Tipo T/metabolismo , Caveolina 3/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Eletrofisiologia , Junções Comunicantes/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Canais Iônicos/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/metabolismo
6.
Science ; 372(6548): 1333-1336, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140386

RESUMO

The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object's motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.

7.
Science ; 264(5158): 578-82, 1994 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-8160016

RESUMO

Gating currents provide a direct record of the spatial rearrangement of charges occurring within the protein of voltage-sensitive ion channels. If the elementary charges move as very brief discrete pulses of current, they will produce fluctuations in the macroscopic gating current. The variance of such fluctuations in gating currents was measured in Shaker potassium channels expressed in Xenopus oocytes with a sufficiently high recording bandwidth to estimate the magnitude and time distribution of the elementary transition charge movements. Channel activation occurred in two sequential stages. The first stage consisted of numerous, fast transitions, each moving small amounts of charge that contributed little to the fluctuation in gating current, whereas the second stage, which contributed the bulk of the fluctuation, was represented by a number of discrete, correlated transitions, one or more of which carried a charge of at least 2.4 elementary charges across the membrane field.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Proteínas de Xenopus , Animais , Canal de Potássio Kv1.1 , Potenciais da Membrana , Oócitos , Mutação Puntual , Canais de Potássio/química , Canais de Potássio/genética , Xenopus
8.
Neuron ; 16(6): 1159-67, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8663992

RESUMO

The activation of Shaker K+ channels is steeply voltage dependent. To determine whether conserved charged amino acids in putative transmembrane segments S2, S3, and S4 contribute to the gating charge of the channel, the total gating charge movement per channel was measured in channels containing neutralization mutations. Of eight residues tested, four contributed significantly to the gating charge: E293, an acidic residue in S2, and R365, R368, and R371, three basic residues in the S4 segment. The results indicate that these residues are a major component of the voltage sensor. Furthermore, the S4 segment is not solely responsible for gating charge movement in Shaker K+ channels.


Assuntos
Potenciais da Membrana/fisiologia , Canais de Potássio/fisiologia , Animais , Xenopus
9.
J Gen Physiol ; 109(1): 27-39, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8997663

RESUMO

One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96-190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/fisiologia , Modelos Biológicos , Eletrofisiologia , Termodinâmica
10.
J Gen Physiol ; 112(2): 223-42, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9689029

RESUMO

Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2-22 degreesC. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2-0.3 eo. The Ig On response obtained between -60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from -60 to -10 mV, and approximately 0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at -50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between -90 and -50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8 degreesC and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio/fisiologia , Temperatura , Animais , Condutividade Elétrica , Estimulação Elétrica , Entropia , Cinética , Potenciais da Membrana/fisiologia , Oócitos/química , Oócitos/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio , Fatores de Tempo , Xenopus laevis
11.
J Gen Physiol ; 117(2): 149-63, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11158167

RESUMO

In Shaker K(+) channel, the amino terminus deletion Delta6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Delta6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about -30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to -90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio/genética , Canais de Potássio/metabolismo , Animais , Artefatos , Condutividade Elétrica , Cinética , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Probabilidade , Superfamília Shaker de Canais de Potássio , Xenopus laevis
12.
Ann Thorac Surg ; 72(5): 1576-82, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11722047

RESUMO

BACKGROUND: Opioid receptor agonists are involved in ischemic preconditioning and natural hibernation. The aim of this study was to determine whether pretreatment with D-Ala2-Leu5-enkephalin or morphine confers cardioprotection in large mammalian hearts. We assessed myocardial functional recovery and global energy metabolism after ischemic cold storage. METHODS: After pretreatment with D-Ala2-Leu5-enkephalin, morphine sulfate, or saline (n = 6 each), swine hearts were excised and stored for 75 minutes at 4 degrees C, then reperfused in a four-chamber isolated working heart apparatus. Serial myocardial biopsies were performed to assess cellular energy metabolism. RESULTS: Improved systolic (cardiac output, contractility) and diastolic (tau) left ventricular functions were observed in hearts pretreated with D-Ala2-Leu5-enkephalin or morphine. These benefits were not correlated with changes in high-energy phosphate levels. Cardiac enzyme leakage (creatine kinase, troponin-I) was similar among treated and control groups. Lactate efflux increased significantly in controls, but not in opioid-pretreated hearts (p < 0.01) at 75 minutes of reperfusion. CONCLUSIONS: D-Ala2-Leu5-enkephalin and morphine pretreatments improve postischemic function after cold storage of swine hearts. Postischemic lactate reduction, but not high-energy phosphate levels, may account for the observed cardioprotective effects.


Assuntos
Metabolismo Energético , Leucina Encefalina-2-Alanina/farmacologia , Precondicionamento Isquêmico Miocárdico , Morfina/farmacologia , Miocárdio/metabolismo , Animais , Suínos
13.
J Opt Soc Am A Opt Image Sci Vis ; 17(9): 1642-9, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10975374

RESUMO

In the long-baseline laser interferometers for measuring gravitational waves that are now under construction, understanding the dynamical response to small distortions such as angular alignment fluctuations presents a unique challenge. These interferometers comprise multiple coupled optical resonators with light storage times approaching 100 m. We present a basic formalism to calculate the frequency dependence of periodic variations in angular alignment and longitudinal displacement of the resonator mirrors. The electromagnetic field is decomposed into a superposition of higher-order spatial modes, Fourier frequency components, and polarization states. Alignment fluctuations and length variations of free-space propagation are represented by matrix operators that act on the multicomponent state vectors of the field.

14.
J Neurosurg Anesthesiol ; 11(4): 231-9, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10527141

RESUMO

A decrease of 1-2 degrees C core temperature provides protection against cerebral ischemia. However, shivering usually prevents reduction in core temperature in unanesthetized patients. Therefore, it was tested whether facial and airway heating increases the shivering threshold and enables core cooling in unanesthetized patients. Nine trials were performed on seven healthy male volunteers. Each subject was positioned supine on a circulating-water mattress (8-15 degrees C) with a convective-air coverlet (15-18 degrees C) extending from the neck to the feet. A dynamic study protocol governed by individualized physiological responses was used. Focal facial (and airway) warming was employed to suppress involuntary motor activity (muscle tensing, shivering) and, thereby, enabling noninvasive cooling to lower the core temperature. The following parameters were monitored: 1) heart rate, 2) blood pressure, 3) core temperature (tympanic, axilla, and rectal), 4) cutaneous temperatures, and 5) a subjective shiver index (scale 1-10). In three, electromyograms and infrared thermographs were also obtained. Upon cooling without facial and airway warming, involuntary motor activity increased until it was widespread. This vigorous motor activity prevented any significant lowering of core temperature or caused it to slightly increase. Subsequently, in all subjects, within seconds after the application of facial focal warming, motor activity was suppressed almost completely, and within minutes core temperatures significantly decreased. Preliminary studies described here indicate that focal facial warming applied during active whole body cooling to initiate mild hypothermia might minimize the need to pharmacologically suppress involuntary motor activity. Such a procedure might be useful for initiating as soon as possible (such as during emergency transport), cerebral mild hypothermia in order to maximize protection and thus improve outcome in neurologically injured patients (head trauma, stroke).


Assuntos
Temperatura Corporal , Face , Estremecimento/fisiologia , Temperatura Cutânea/fisiologia , Adulto , Análise de Variância , Temperatura Alta , Humanos , Umidade , Masculino , Termografia/métodos
17.
Mol Ecol ; 15(10): 2997-3007, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16911216

RESUMO

Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.


Assuntos
Tamanho Corporal , Marsupiais/fisiologia , Reprodução/fisiologia , Animais , Pai , Endogamia , Masculino , Marsupiais/anatomia & histologia , Comportamento Sexual Animal/fisiologia
18.
J Membr Biol ; 206(2): 141-54, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16456724

RESUMO

Sudden cardiac death remains one of the most serious medical challenges in Western countries. Increasing evidence in recent years has demonstrated that the n-3 polyunsaturated fatty acids (PUFAs) can prevent fatal ventricular arrhythmias in experimental animals and probably in humans. Dietary supplement of fish oils or intravenous infusion of the n-3 PUFAs prevents ventricular fibrillation caused by ischemia/reperfusion. Similar antiarrhythmic effects of these fatty acids are also observed in cultured mammalian cardiomyocytes. Based on clinical observations and experimental studies in vitro and in vivo, several mechanisms have been postulated for the antiarrhythmic effect of the n-3 PUFAs. The data from our laboratory and others have shown that the n-3 PUFAs are able to affect the activities of cardiac ion channels. The modulation of channel activities, especially voltage-gated Na(+) and L-type Ca(2+) channels, by the n-3 fatty acids may explain, at least partially, the antiarrhythmic action. It is not clear, however, whether one or more than one mechanism involves the beneficial effect of the n-3 PUFAs on the heart. This article summarizes our recent studies on the specific effects of the n-3 PUFAs on cardiac ion channels. In addition, the effect of the n-3 PUFAs on the human hyperpolarization-activated cyclic-nucleotide-modulated channel is presented.


Assuntos
Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Ácidos Graxos Ômega-3/administração & dosagem , Sistema de Condução Cardíaco/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Modelos Cardiovasculares , Animais , Sistema de Condução Cardíaco/efeitos dos fármacos , Humanos
19.
Anesthesiology ; 92(6): 1777-88, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10839930

RESUMO

BACKGROUND: Succinylcholine causes immediate and severe arterial hypotension in swine with the malignant hyperthermia phenotype. The underlying mechanisms are unknown. METHODS: Malignant hyperthermia-susceptible (MHS; n = 10) and normal swine (n = 5) were anesthetized with thiopental. The following were monitored: electrocardiogram; arterial blood pressure; pulmonary artery, central venous, and left and right ventricular pressure; cardiac output; end-tidal carbon dioxide; core temperature; peripheral-blood flows; and arterial blood gases. After a control period, 2 mg/kg succinylcholine was given intravenously. Three MHS animals received 1 mg/kg vecuronium and two MHS animals received 2.5 mg/kg dantrolene intravenously. The effects of succinylcholine on left and right ventricular pressure and contractility were analyzed in isolated hearts. The effects of 0.06 mm succinylcholine on isometric tension development were recorded in isolated femoral artery rings. RESULTS: Succinylcholine caused an early, severe decrease in blood pressure, cardiac output, left ventricular pressure, and left ventricular contractility in MHS swine but not in normal swine; no significant differences were found in heart rate, right ventricular parameters, systemic vascular resistance, and preload (pulmonary diastolic pressure, central venous pressure). The succinylcholine-induced hypotension and associated effects were not prevented by dantrolene. However, pretreatment with high-dose vecuronium prevented not only the cardiovascular depression, but also MH. In addition, no phenotypic differences of succinylcholine on contractility or left ventricular pressure were observed in the isolated working hearts. Similary, succinylcholine did not cause a significantly different relaxation in rings in either phenotype. CONCLUSION: Succinylcholine-induced hypotension occurred before muscle hypermetabolism in MHS swine. Succinylcholine had no differential physiologic effects on either the isolated heart or on isolated arteries. This hypotension could not be prevented by dantrolene but was prevented by pretreatment with high-dose vecuronium. Thus, an indirect mechanism such as the release of a cardiac depressant from skeletal muscle may have caused this hypotensive response.


Assuntos
Hipotensão/induzido quimicamente , Hipotensão/genética , Hipertermia Maligna/genética , Fármacos Neuromusculares Despolarizantes/efeitos adversos , Succinilcolina/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Hipotensão/fisiopatologia , Técnicas In Vitro , Músculo Masseter/irrigação sanguínea , Músculo Masseter/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Contração Miocárdica/efeitos dos fármacos , Fenótipo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Suínos , Resistência Vascular/efeitos dos fármacos , Função Ventricular/efeitos dos fármacos
20.
Biophys J ; 76(2): 782-803, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9929481

RESUMO

Kramers' diffusion theory of reaction rates in the condensed phase is considered as an alternative to the traditional discrete-state Markov (DSM) model in describing ion channel gating current kinetics. Diffusion theory can be expected to be particularly relevant in describing high-frequency (>100 kHz) events in channel activation. The generalized voltage sensor of a voltage-dependent ion channel is treated as a Brownian motion particle undergoing spatial diffusion along a one-dimensional energy landscape. Two classes of energy landscapes are considered. The first class contains large barriers, which give rise to gating currents with two distinct time scales: the usual low-frequency decay, which can modeled with a DSM scheme, and a high-frequency component arising from intrastate relaxation. Large depolarizations reduce potential barriers to such a degree that activation rates are diffusion limited, causing the two time scales to merge. Landscapes of the second class are either featureless or contain barriers that are small compared to kT; these are termed "drift landscapes." These landscapes require a larger friction coefficient to generate slow gating kinetics. The high-frequency component that appears with barrier models is not present in pure drift motion. The presence of a high-frequency component can be tested experimentally with large-bandwidth recordings of gating currents. Topics such as frequency domain analysis, spatial dependence of the friction coefficient, methods for determining the adequacy of a DSM model, and the development of physical models of gating are explored.


Assuntos
Ativação do Canal Iônico , Difusão , Eletrofisiologia , Fractais , Cinética , Modelos Teóricos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA