RESUMO
Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.
Assuntos
Evolução Molecular , Hemoglobinas/metabolismo , Regulação Alostérica , Sítios de Ligação/genética , Heme/metabolismo , Hemoglobinas/química , Humanos , Ferro/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Multimerização Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
We describe an unusual mortality event caused by a highly pathogenic avian influenza (HPAI) A(H5N1) virus clade 2.3.4.4b involving harbor (Phoca vitulina) and gray (Halichoerus grypus) seals in the St. Lawrence Estuary, Quebec, Canada, in 2022. Fifteen (56%) of the seals submitted for necropsy were considered to be fatally infected by HPAI H5N1 containing fully Eurasian or Eurasian/North American genome constellations. Concurrently, presence of large numbers of bird carcasses infected with HPAI H5N1 at seal haul-out sites most likely contributed to the spillover of infection to the seals. Histologic changes included meningoencephalitis (100%), fibrinosuppurative alveolitis, and multiorgan acute necrotizing inflammation. This report of fatal HPAI H5N1 infection in pinnipeds in Canada raises concerns about the expanding host of this virus, the potential for the establishment of a marine mammal reservoir, and the public health risks associated with spillover to mammals.Nous décrivons un événement de mortalité inhabituelle causé par un virus de l'influenza aviaire hautement pathogène A(H5N1) clade 2.3.4.4b chez des phoques communs (Phoca vitulina) et gris (Halichoerus grypus) dans l'estuaire du Saint-Laurent au Québec, Canada, en 2022. Quinze (56%) des phoques soumis pour nécropsie ont été considérés comme étant fatalement infectés par le virus H5N1 de lignées eurasiennes ou de réassortiment eurasiennes/nord-américaines. Un grand nombre simultané de carcasses d'oiseaux infectés par le H5N1 sur les sites d'échouement a probablement contribué à la contamination de ces phoques. Les changements histologiques associés à cette infection incluaient : méningo-encéphalite (100%), alvéolite fibrinosuppurée et inflammation nécrosante aiguë multi-organique. Cette documentation soulève des préoccupations quant à l'émergence de virus mortels, à la possibilité d'établissement de réservoirs chez les mammifères marins, et aux risques pour la santé publique associés aux propagations du virus chez les mammifères.
Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1 , Animais , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Quebeque/epidemiologia , Surtos de Doenças/veterinária , Estuários , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Aviária/história , Focas Verdadeiras/virologia , Filogenia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/epidemiologia , Aves/virologiaRESUMO
Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.
Assuntos
Adaptação Fisiológica , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Spheniscidae/fisiologia , Substituição de Aminoácidos , Animais , Oxiemoglobinas/química , Oxiemoglobinas/genética , Filogenia , Conformação Proteica , Engenharia de Proteínas , Spheniscidae/sangue , Spheniscidae/classificaçãoRESUMO
In vertebrate haemoglobin (Hb), the NH2-terminal residues of the α- and ß-chain subunits are thought to play an important role in the allosteric binding of protons (Bohr effect), CO2 (as carbamino derivatives), chloride ions, and organic phosphates. Accordingly, acetylation of the α- and/or ß-chain NH2-termini may have significant effects on the oxygenation properties of Hb. Here we investigate the effect of NH2-terminal acetylation by using a newly developed expression plasmid system that enables us to compare recombinantly expressed Hbs that are structurally identical except for the presence or absence of NH2-terminal acetyl groups. Experiments with native and recombinant Hbs of representative vertebrates reveal that NH2-terminal acetylation does not impair the Bohr effect, nor does it significantly diminish responsiveness to allosteric cofactors, such as chloride ions or organic phosphates. These results suggest that observed variation in the oxygenation properties of vertebrate Hbs is principally explained by amino acid divergence in the constituent globin chains rather than post-translational modifications of the globin chain NH2-termini.
Assuntos
Hemoglobinas/química , Oxigênio/química , Acetilação , Regulação Alostérica , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Oxigênio/metabolismoRESUMO
When different species experience similar selection pressures, the probability of evolving similar adaptive solutions may be influenced by legacies of evolutionary history, such as lineage-specific changes in genetic background. Here we test for adaptive convergence in hemoglobin (Hb) function among high-altitude passerine birds that are native to the Qinghai-Tibet Plateau, and we examine whether convergent increases in Hb-O2 affinity have a similar molecular basis in different species. We documented that high-altitude parid and aegithalid species from the Qinghai-Tibet Plateau have evolved derived increases in Hb-O2 affinity in comparison with their closest lowland relatives in East Asia. However, convergent increases in Hb-O2 affinity and convergence in underlying functional mechanisms were seldom attributable to the same amino acid substitutions in different species. Using ancestral protein resurrection and site-directed mutagenesis, we experimentally confirmed two cases in which parallel substitutions contributed to convergent increases in Hb-O2 affinity in codistributed high-altitude species. In one case involving the ground tit (Parus humilis) and gray-crested tit (Lophophanes dichrous), parallel amino acid replacements with affinity-enhancing effects were attributable to nonsynonymous substitutions at a CpG dinucleotide, suggesting a possible role for mutation bias in promoting recurrent changes at the same site. Overall, most altitude-related changes in Hb function were caused by divergent amino acid substitutions, and a select few were caused by parallel substitutions that produced similar phenotypic effects on the divergent genetic backgrounds of different species.
Assuntos
Adaptação Fisiológica/genética , Altitude , Hemoglobinas/fisiologia , Passeriformes/genética , Passeriformes/fisiologia , Distribuição Animal , Animais , Evolução Molecular , Hemoglobinas/genética , Modelos Moleculares , Passeriformes/sangue , Conformação Proteica , Isoformas de Proteínas , TibetRESUMO
As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller's sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb-O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb-O2 affinity in (sub)Arctic Steller's sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.
Assuntos
Adaptação Biológica , Evolução Molecular , Globinas/genética , Pseudogenes , Sirênios/genética , Animais , Conversão Gênica , Globinas/metabolismo , Masculino , Família Multigênica , Proteínas Mutantes Quiméricas , Oxigênio/metabolismo , Seleção Genética , Sirênios/metabolismoRESUMO
A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb-O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the ß-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked ß-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the ß-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb-O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed's relatively short duration of residency at high altitude.
Assuntos
Aclimatação/genética , Altitude , Canidae/genética , Introgressão Genética , Hemoglobinas/fisiologia , Substituição de Aminoácidos , Animais , Conversão Gênica , Modelos Moleculares , MutaçãoRESUMO
The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans.
Assuntos
Sirênios/classificação , Animais , Evolução Biológica , Proteínas do Esmalte Dentário/genética , Fósseis , Genes , Filogenia , Análise de Sequência de DNA , Sirênios/anatomia & histologia , Sirênios/genéticaRESUMO
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during ß-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Assuntos
Processamento Alternativo , Éxons , Frequência Cardíaca , Contração Miocárdica , Troponina I , Animais , Humanos , Frequência Cardíaca/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Fosforilação , Serina/metabolismo , Serina/genética , Troponina I/classificação , Troponina I/genética , Troponina I/metabolismo , Filogenia , Contração Miocárdica/genéticaRESUMO
Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.
Assuntos
Aves , Influenza Aviária , Mamíferos , Animais , Influenza Aviária/virologia , Influenza Aviária/transmissão , América do Norte/epidemiologia , Mamíferos/virologia , Aves/virologia , Furões , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Humanos , Filogenia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissãoRESUMO
Following the detection of novel highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b in Newfoundland, Canada, in late 2021, avian influenza virus (AIV) surveillance in wild birds was scaled up across Canada. Herein, we present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds during the first year (November 2021-November 2022) following the incursions of HPAIV from Eurasia. The key objectives of the surveillance program were to (i) identify the presence, distribution, and spread of HPAIV and other AIVs; (ii) identify wild bird morbidity and mortality associated with HPAIV; (iii) identify the range of wild bird species infected by HPAIV; and (iv) genetically characterize detected AIV. A total of 6,246 sick and dead wild birds were tested, of which 27.4% were HPAIV positive across 12 taxonomic orders and 80 species. Geographically, HPAIV detections occurred in all Canadian provinces and territories, with the highest numbers in the Atlantic and Central Flyways. Temporally, peak detections differed across flyways, though the national peak occurred in April 2022. In an additional 11,295 asymptomatic harvested or live-captured wild birds, 5.2% were HPAIV positive across 3 taxonomic orders and 19 species. Whole-genome sequencing identified HPAIV of Eurasian origin as most prevalent in the Atlantic Flyway, along with multiple reassortants of mixed Eurasian and North American origins distributed across Canada, with moderate structuring at the flyway scale. Wild birds were victims and reservoirs of HPAIV H5N1 2.3.4.4b, underscoring the importance of surveillance encompassing samples from sick and dead, as well as live and harvested birds, to provide insights into the dynamics and potential impacts of the HPAIV H5N1 outbreak. This dramatic shift in the presence and distribution of HPAIV in wild birds in Canada highlights a need for sustained investment in wild bird surveillance and collaboration across interagency partners. IMPORTANCE: We present the results of Canada's Interagency Surveillance Program for Avian Influenza in Wild Birds in the year following the first detection of highly pathogenic avian influenza virus (HPAIV) H5N1 on the continent. The surveillance program tested over 17,000 wild birds, both sick and apparently healthy, which revealed spatiotemporal and taxonomic patterns in HPAIV prevalence and mortality across Canada. The significant shift in the presence and distribution of HPAIV in Canada's wild birds underscores the need for sustained investment in wild bird surveillance and collaboration across One Health partners.
Assuntos
Animais Selvagens , Aves , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Canadá/epidemiologia , Aves/virologia , Animais Selvagens/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Filogenia , Europa (Continente)/epidemiologia , Monitoramento Epidemiológico , Ásia/epidemiologiaRESUMO
The extraordinary breath-hold diving capacity of crocodilians has been ascribed to a unique mode of allosterically regulating hemoglobin (Hb)-oxygenation in circulating red blood cells. We investigated the origin and mechanistic basis of this novel biochemical phenomenon by performing directed mutagenesis experiments on resurrected ancestral Hbs. Comparisons of Hb function between the common ancestor of archosaurs (the group that includes crocodilians and birds) and the last common ancestor of modern crocodilians revealed that regulation of Hb-O2 affinity via allosteric binding of bicarbonate ions represents a croc-specific innovation that evolved in combination with the loss of allosteric regulation by ATP binding. Mutagenesis experiments revealed that evolution of the novel allosteric function in crocodilians and the concomitant loss of ancestral function were not mechanistically coupled and were caused by different sets of substitutions. The gain of bicarbonate sensitivity in crocodilian Hb involved the direct effect of few amino acid substitutions at key sites in combination with indirect effects of numerous other substitutions at structurally disparate sites. Such indirect interaction effects suggest that evolution of the novel protein function was conditional on neutral mutations that produced no adaptive benefit when they first arose but that contributed to a permissive background for subsequent function-altering mutations at other sites. Due to the context dependence of causative substitutions, the unique allosteric properties of crocodilian Hb cannot be easily transplanted into divergent homologs of other species.
Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Evolução Molecular , Hemoglobinas/genética , Hemoglobinas/química , Hemoglobinas/metabolismo , Aves/fisiologia , Mutação , Oxigênio/metabolismoRESUMO
The African swine fever virus (ASFV) is currently causing a world-wide pandemic of a highly lethal disease in domestic swine and wild boar. Currently, recombinant ASF live-attenuated vaccines based on a genotype II virus strain are commercially available in Vietnam. With 25 reported ASFV genotypes in the literature, it is important to understand the molecular basis and usefulness of ASFV genotyping, as well as the true significance of genotypes in the epidemiology, transmission, evolution, control, and prevention of ASFV. Historically, genotyping of ASFV was used for the epidemiological tracking of the disease and was based on the analysis of small fragments that represent less than 1% of the viral genome. The predominant method for genotyping ASFV relies on the sequencing of a fragment within the gene encoding the structural p72 protein. Genotype assignment has been accomplished through automated phylogenetic trees or by comparing the target sequence to the most closely related genotyped p72 gene. To evaluate its appropriateness for the classification of genotypes by p72, we reanalyzed all available genomic data for ASFV. We conclude that the majority of p72-based genotypes, when initially created, were neither identified under any specific methodological criteria nor correctly compared with the already existing ASFV genotypes. Based on our analysis of the p72 protein sequences, we propose that the current twenty-five genotypes, created exclusively based on the p72 sequence, should be reduced to only six genotypes. To help differentiate between the new and old genotype classification systems, we propose that Arabic numerals (1, 2, 8, 9, 15, and 23) be used instead of the previously used Roman numerals. Furthermore, we discuss the usefulness of genotyping ASFV isolates based only on the p72 gene sequence.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Genótipo , Filogenia , Análise de Sequência , Sus scrofa , SuínosRESUMO
The extinct Steller's sea cow (Hydrodamalis gigas; 1768) was a whale-sized marine mammal that manifested profound morphological specializations to exploit the harsh coastal climate of the North Pacific. Yet despite first-hand accounts of their biology, little is known regarding the physiological adjustments underlying their evolution to this environment. Here, the adult-expressed hemoglobin (Hb; α2ß/δ2) of this sirenian is shown to harbor a fixed amino acid replacement at an otherwise invariant position (ß/δ82LysâAsn) that alters multiple aspects of Hb function. First, our functional characterization of recombinant sirenian Hb proteins demonstrates that the Hb-O2 affinity of this sub-Arctic species was less affected by temperature than those of living (sub)tropical sea cows. This phenotype presumably safeguarded O2 delivery to cool peripheral tissues and largely arises from a reduced intrinsic temperature sensitivity of the H. gigas protein. Additional experiments on H. gigas ß/δ82AsnâLys mutant Hb further reveal this exchange renders Steller's sea cow Hb unresponsive to the potent intraerythrocytic allosteric effector 2,3-diphosphoglycerate, a radical modification that is the first documented example of this phenotype among mammals. Notably, ß/δ82LysâAsn moreover underlies the secondary evolution of a reduced blood-O2 affinity phenotype that would have promoted heightened tissue and maternal/fetal O2 delivery. This conclusion is bolstered by analyses of two Steller's sea cow prenatal Hb proteins (Hb Gower I; ζ2ε2 and HbF; α2γ2) that suggest an exclusive embryonic stage expression pattern, and reveal uncommon replacements in H. gigas HbF (γ38ThrâIle and γ101GluâAsp) that increased Hb-O2 affinity relative to dugong HbF. Finally, the ß/δ82LysâAsn replacement of the adult/fetal protein is shown to increase protein solubility, which may have elevated red blood cell Hb content within both the adult and fetal circulations and contributed to meeting the elevated metabolic (thermoregulatory) requirements and fetal growth rates associated with this species cold adaptation.
In 1741, shipwrecked naturalist Georg Wilhelm Steller made detailed observations of large marine mammals grazing on seaweed in the shallow waters surrounding a remote island in the North Pacific Ocean. Within thirty years, these 'Steller's sea cows' had been hunted to extinction. Unlike their remaining tropical relatives dugongs and manatees Steller's sea cows were specialized to cold, sub-Arctic environments. Measuring up to 10 meters long, they were much larger than other sea cow species. This, along with having very thick skin, helped them to reduce heat loss. Previous work showed that the hemoglobin protein which binds to and carries oxygen around mammalian bodies of Steller's sea cows had a decreased affinity for oxygen, resulting in greater delivery of oxygen to organs and tissues. It was thought that this could be an adaptation to fuel heightened metabolic heat production in cold conditions. Studies of ancient DNA also identified the substitution of a single building block in the Steller's sea cow hemoglobin protein that is not present in other mammals and was suspected to underlie this modification. To determine how this unique substitution affects Steller's sea cow hemoglobin function and whether it contributed to their ability to live in cold environments Signore et al. generated hemoglobin proteins of Steller's sea cows, dugongs and Florida manatees. Testing their biochemical properties showed that this single exchange profoundly alters multiple aspects of how the Steller's sea cow hemoglobin works. Alongside reducing hemoglobin's oxygen affinity, the Steller's sea cow substitution also makes the protein more soluble, potentially increasing the level of hemoglobin within red blood cells. Additionally, it eliminates hemoglobin sensitivity to a molecule involved in oxygen binding known as DPG saving energy by no longer requiring production of this molecule. Furthermore, the same substitution makes hemoglobin less sensitive to changes in temperature, which would have helped to safeguard the delivery of oxygen to cool limbs and other extremities, reducing costly heat loss. Together, these changes in hemoglobin would have helped the Steller's sea cow to more efficiently transport oxygen around the body. Importantly, generating and testing Steller's sea cow pre-natal hemoglobins suggested this substitution may have also helped to enhance the fetal growth rate of these immense marine mammals by improving gas exchange between the mother and fetus. Signore et al. have revealed how a mutated form of hemoglobin allowed an extinct mammal to adapt to an extreme environment. Similar methods could be used to understand the physiological attributes of other extinct animals. In the future, this increased understanding of hemoglobin mutations could aid the development of human hemoglobin substitutes for therapeutic uses.
Assuntos
Dugong , Animais , Mamíferos , Hemoglobinas/genética , Clima , OxigênioRESUMO
In December 2022 and January 2023, we isolated clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) viruses from six American crows (Corvus brachyrhynchos) from Prince Edward Island and a red fox (Vulpes vulpes) from Newfoundland, Canada. Using full-genome sequencing and phylogenetic analysis, these viruses were found to fall into two distinct phylogenetic clusters: one group containing H5N1 viruses that had been circulating in North and South America since late 2021, and the other one containing European H5N1 viruses reported in late 2022. The transatlantic re-introduction for the second time by pelagic/Icelandic bird migration via the same route used during the 2021 incursion of Eurasian origin H5N1 viruses into North America demonstrates that migratory birds continue to be the driving force for transcontinental dissemination of the virus. This new detection further demonstrates the continual long-term threat of H5N1 viruses for poultry and mammals and the subsequent impact on various wild bird populations wherever these viruses emerge. The continual emergence of clade 2.3.4.4b H5Nx viruses requires vigilant surveillance in wild birds, particularly in areas of the Americas, which lie within the migratory corridors for long-distance migratory birds originating from Europe and Asia. Although H5Nx viruses have been detected at higher rates in North America since 2021, a bidirectional flow of H5Nx genes of American origin viruses to Europe has never been reported. In the future, coordinated and systematic surveillance programs for HPAI viruses need to be launched between European and North American agencies.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Canadá/epidemiologia , Aves , Europa (Continente)/epidemiologia , Raposas , Influenza Aviária/epidemiologiaRESUMO
The structural and evolutionary origins underlying the effect of temperature on the O(2) binding properties of mammalian hemoglobins (Hbs) are poorly understood, despite their potential physiological importance. Previous work has shown that the O(2) affinities of the blood of the coast mole (Scapanus orarius) and the eastern mole (Scalopus aquaticus) are significantly less sensitive to temperature changes than that of the star-nosed mole (Condylura cristata). It was suggested that this difference may arise from the binding of 'additional' chloride ions within a cationic pocket between residues 8His, 76Lys and 77Asn on the ß-like δ-globin chains of coast and eastern mole Hbs. To test this hypothesis, we deduced the primary sequences of star-nosed mole and American shrew mole (Neurotrichus gibbsii) Hb, measured the sensitivity of these respiratory proteins to allosteric effector molecules and temperature, and calculated their overall oxygenation enthalpies (ΔH'). Here we show that the variability in ΔH' seen among mole Hbs cannot be attributed to differential Cl(-) binding at δ8, δ76 and δ77, as the Cl(-) sensitivity of mole Hbs is unaffected by amino acid changes at this site (i.e. the proposed 'additional' Cl- binding site is not operational in mole Hbs). Rather, we demonstrate that the numerically low ΔH' of coast and eastern mole Hbs results from heightened proton binding relative to other mole Hbs. Comparative sequence analysis and molecular modelling moreover suggest that this attribute evolved in a common ancestor of these two fossorial lineages and arises from the development of a salt bridge between a pair of amino acid residues (δ125His and α34Glu/Asp) that are not present in other mole Hbs.
Assuntos
Temperatura Corporal/fisiologia , Cloretos/metabolismo , Hemoglobinas/metabolismo , Toupeiras/metabolismo , Oxigênio/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/sangue , Prótons , Alinhamento de Sequência , Análise de Sequência de DNA , gama-Globulinas/química , gama-Globulinas/metabolismoRESUMO
Primates have adapted to numerous environments and lifestyles but very few species are native to high elevations. Here we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of haematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared with baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult haemoglobin but found that gelada haemoglobin does not exhibit markedly altered oxygenation properties compared with lowland primates. We also found that geladas at high altitude do not exhibit elevated blood haemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythaemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.
Assuntos
Theropithecus , Altitude , Animais , Cromossomos , Genômica , Hipóxia , Oxigênio , Theropithecus/fisiologiaRESUMO
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
RESUMO
In natural populations of animals, a growing body of evidence suggests that introgressive hybridization may often serve as an important source of adaptive genetic variation. Population genomic studies of high-altitude vertebrates have provided strong evidence of positive selection on introgressed allelic variants, typically involving a long-term highland species as the donor and a more recently arrived colonizing species as the recipient. In high-altitude humans and canids from the Tibetan Plateau, case studies of adaptive introgression involving the HIF transcription factor, EPAS1, have provided insights into complex histories of ancient introgression, including examples of admixture from now-extinct source populations. In Tibetan canids and Andean waterfowl, directed mutagenesis experiments involving introgressed hemoglobin variants successfully identified causative amino acid mutations and characterized their phenotypic effects, thereby providing insights into the functional properties of selectively introgressed alleles. We review case studies of adaptive introgression in high-altitude vertebrates and we highlight findings that may be of general significance for understanding mechanisms of environmental adaptation involving different sources of genetic variation.