Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2397-2400, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691728

RESUMO

Metamaterials opened a new realm to control light-matter interactions at sub-wavelength scale by engineering meta-atoms. Recently, the integration of several emerging nonlinear materials with metamaterial structures enables ultra-fast all-optical switching at the nanoscale and thus brings enormous possibilities to realize next-generation optical communication systems. This Letter presents a novel, to the best of our knowledge, design of plasmonic metamaterials for high-contrast femtosecond all-optical switching. We leverage magnetic plasmon (MP) resonance combined with the nonlinear effects of an epsilon-near-zero (ENZ)-material. The proposed design comprises a periodic array of two closely spaced Au-nanogratings deposited on an optically thick Au-substrate to excite MP-resonance. To enable a dynamically tunable resonance, the nanogrooves in meta-atoms are filled with an ENZ-material, cadmium-oxide (CdO). The intraband transition-induced optical nonlinearities in the ENZ-medium are studied using a two-temperature model. The MP-resonance ensures strong light-matter interactions enabling enhancement of the nonlinearities of the proposed structure. We observe that the pump-induced refractive index change in the CdO layer causes a redshift of the MP-resonance dip wavelength in the reflectance spectrum, leading to a high modulation depth of 0.83 at 1.55 µm. With an ultra-fast response time of 776 fs while maintaining a low pump-fluence of 75 µJ/cm2, the proposed metamaterial could help in realizing switches for next-generation optical computation systems.

2.
Opt Lett ; 47(19): 4993-4996, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181169

RESUMO

Electro-tunable metasurfaces have attracted much attention for the active control of incident light at the nanoscale by engineering sub-wavelength meta-atoms. In this Letter, for the first time, to the best of our knowledge, a grating-assisted dual-band metasurface for spatial light modulation is reported that can operate in two crucial telecommunication wavelength bands, i.e., C-band and O-band. The proposed device consists of a silicon-nitride nanograting on top of a silicon-indium-tin-oxide (ITO)-alumina-gold stack. Effective medium theory combined with a modal analysis is used to study the guided-mode resonance dips at 1.55 µm and 1.31 µm in the reflectance spectra. We leverage the epsilon-near-zero effect of ITO by applying an external bias voltage to introduce large modal loss, which leads to the disappearance of the resonance dips at those wavelengths. We obtain a high modulation depth of ∼22.3 dB at 1.55 µm and ∼19.5 dB at 1.31 µm with an applied bias of -4 V and -5 V, respectively. Thus, the proposed metasurface may help to realize dual-band active nanophotonic devices.

3.
Opt Lett ; 47(9): 2242-2245, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486770

RESUMO

Passive windows that can concurrently block infrared radiation while allowing transmission of visible radiation help in significantly reducing global energy usage by cooling and lighting systems deployed in buildings and vehicles. This Letter reports a design of plasmonic "meta-glass" that blocks up to ∼87% of infrared radiation over a spectral window of 750-1800 nm, predominantly responsible for indoor radiative heating, while maintaining an average visible transmission of 60% for providing indoor illumination. Our polarization-independent design comprises a two-dimensional hexagonal array of tungsten nanorings placed on top of a silica glass substrate. By virtue of surface plasmons excitation in the infrared regime, we achieve selective suppression in the transmission spectrum, which is tailorable by adjusting the dimension of the nanorings. The theoretically calculated figure-of-merit indicates that our proposed meta-glass designs outperform some of the recently reported window glass varieties in the literature.

4.
Appl Opt ; 60(5): 1315-1325, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690574

RESUMO

Passive all-weather windows, capable of selectively transmitting visible and infrared solar radiation, could help in bringing down fossil-fuel energy consumption globally by reducing the carbon footprint of typical air-conditioning systems for buildings and motor vehicles. Here, we report on designing metal-insulator-metal thin-films for application in passive windows, optimized for different climatic conditions. We analyze designs comprising different noble metals as well as their relatively inexpensive alternatives. By finding an optimal choice of materials and thicknesses of the metal and dielectric layers, our lithography-free simple design can provide all-weather solutions for passive windows with desired visible and infrared transmission/blocking capability. Obtained theoretical results agree well with full-wave simulations. Thus, our proposed designs enable developing low-cost, ultra-thin (thickness: 47-85 nm), polarization-independent, angle-insensitive (up to 83 deg), and large-area-compatible passive windows with improved solar-radiation control for different weather/climatic conditions. The figure-of-merit calculation shows that the relatively inexpensive metals used in our passive glasses can outperform industry-standard commercial glasses and previously reported infrared-blocking plasmonic glasses.

5.
Nat Mater ; 18(6): 650, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31076666

RESUMO

In the version of this Article originally published, the last sentence of the acknowledgements incorrectly read 'L.V. acknowledges the support of a Marie Skodowska-Curie fellowship (N-SHEAD)'; it should have read 'L.V. and D.S. acknowledge the support of Marie Sklodowska-Curie fellowships, N-SHEAD and S-OMMs, respectively'.

6.
Opt Express ; 27(19): 26483-26498, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674529

RESUMO

Electrically tuneable, guided self-assembly of plasmonic nanoparticles (NPs) at polarized, patterned solid-liquid interfaces could enable numerous platforms for designing nanoplasmonic optical devices with new tuneable functionalities. Here, we propose a unique design of voltage-controlled guided 3D self-assembly of plasmonic NPs on transparent electrodes, patterned as columnar structures-arrays of vertical nanorods. NP assembly on the electrified surfaces of those columnar structures allows formation of a 3D superstructure of NPs, comprising stacking up of NPs in the voids between the columns, forming multiple NP-layers. A comprehensive theoretical model, based on quasi-static effective medium theory and multilayer Fresnel reflection scheme, is developed and verified against full-wave simulations for obtaining optical responses-reflectance, transmittance, and absorbance-from such systems of 3D self-assembled NPs. With a specific example of small gold nanospheres self-assembling on polarized zinc oxide columns, we show that the reflectance spectrum can be controlled by the number of stacked NP-layers. Numerical simulations show that peak reflectance can be enhanced up to ∼1.7 times, along with spectral broadening by a factor of ∼2-allowing wide-range tuning of optical reflectivity. Smaller NPs with superior mobility would be preferable over large NPs for realizing such devices for novel photonic and sensing applications.

7.
Nat Mater ; 16(11): 1127-1135, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892055

RESUMO

Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within ±0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective 'mirror' to a transmissive 'window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

8.
Faraday Discuss ; 199: 585-602, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28429003

RESUMO

Self-assembling arrays of metallic nanoparticles at liquid|liquid or liquid|solid interfaces could deliver new platforms for tuneable optical systems. Such systems can switch between very-high and very-low reflectance states upon assembly and disassembly of nanoparticles at the interface, respectively. This encourages creation of electro-variably reversible mirror/window nanoplasmonic devices. However, the response time of these systems is usually limited by the rate-of-diffusion of the nanoparticles in the liquid, towards the interface and back. A large time-constant implies slow switching of the system, challenging the practical viability of such a system. Here we introduce a smart alternative to overcome this issue. We propose obtaining fast switching via electrically-induced rotation of a two-dimensional array of metal nanocuboids tethered to an ITO substrate. By applying potential to the ITO electrode the orientation of nanocuboids can be altered, which results in conversion of a highly-reflective nanoparticle layer into a transparent layer (or vice versa) within sub-second timescales. A theoretical method is developed based on the quasi-static effective-medium approach to analyse the optical response of such arrays, which is verified against full-wave simulations. Further theoretical analysis and estimates based on the potential energy of the nanoparticles in the two orientations corroborate the idea that voltage-controlled switching between the two states of a nanoparticle assembly is a viable option.

9.
Phys Chem Chem Phys ; 18(30): 20486-98, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27406066

RESUMO

Mirror-on-mirror platforms based on arrays of metallic nanoparticles, arranged top-down or self-assembled on a thin metallic film, have interesting optical properties. Interaction of localized surface-plasmons in nanoparticles with propagating surface-plasmons in the film underpins the exotic features of such platforms. Here, we present a comprehensive theoretical framework which emulates such a system using a five-layer-stack model and calculate its reflectance, transmittance, and absorbance spectra. The theory rests on dipolar quasi-static approximations incorporating image-forces and effective medium theory. Systematically tested against full-wave simulations, this simple approach proves to be adequate within its obvious applicability limits. It is used to study optical signals as a function of nanoparticle dimensions, interparticle separation, metal film thickness, the gap between the film and nanoparticles, and incident light characteristics. Several peculiar features are found, e.g., quenching of reflectivity in certain frequency domains or shift of the reflectivity spectra. Schemes are proposed to tailor those as functions of the mentioned parameters. Calculating the system's optical responses in seconds, as compared to much longer running simulations, this theory helps to momentarily unravel the role of each system parameter in light reflection, transmission, and absorption, facilitating thereby the design and optimisation of novel mirror-on-mirror systems.

10.
Mater Horiz ; 11(2): 554-565, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37982355

RESUMO

Recently, there has been a great deal of interest in devices which effectively shield near-infrared light with an additional feature of external field tunability, particularly for energy-saving applications. This article demonstrates an approach for fabricating a highly efficient near-infrared regulating device based on a polymer network liquid crystal reinforced with nanosheets of hexagonal-boron nitride (BN). The device achieves ∼84% IR scattering capability over a wavelength range of 800-2300 nm, and can also be regulated by an electric field. Interestingly, the observed high IR regulation is despite individual components of the composite being IR transparent, in stark contrast to earlier attempted incorporation of IR-absorbing/scattering particles. Detailed experimental characterization methods including FESEM corroborated with EDS and Raman spectroscopy suggest that the preferential positioning of the BN nanosheets, a consequence of the photo-polymerization process, is responsible for the observed feature. The IR reflectivity/back scattering that is doubled upon incorporation of the nanosheets results in an enhanced convective/radiative heat barrier capability, as evidenced by thermal imaging and significant (2 °C) reduction in ambient temperature upon one-Sun illumination. Numerical simulation results are also found to be in good agreement with the observed enhanced reflectance values for the BN-incorporated case. The presence of BN augments the mechanical rigidity of the system by a factor of 6.8 without compromising on the device operating voltage. The protocol employed is quite general and thus advantageous with far-reaching applications in passive cooling of buildings and structures, in thermal camouflaging, and in overall energy management.

11.
J Phys Condens Matter ; 35(39)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339655

RESUMO

Control of polarization states of light is crucial for any photonic system. However, conventional polarization-controlling elements are typically static and bulky. Metasurfaces open a new paradigm to realize flat optical components by engineering meta-atoms at sub-wavelength scale. Tunable metasurfaces can provide enormous degrees-of-freedom to tailor electromagnetic properties of light and thus have the potential to realize dynamic polarization control in nanoscale. In this study, we propose a novel electro-tunable metasurface to enable dynamic control of polarization states of reflected light. The proposed metasurface comprises a two-dimensional array of elliptical Ag-nanopillars deposited on indium-tin-oxide (ITO)-Al2O3-Ag stack. In unbiased condition, excitation of gap-plasmon resonance in the metasurface leads to rotation ofx-polarized incident light to orthogonally polarized reflected light (i.e.,y-polarized) at 1.55µm. On the other hand, by applying bias-voltage, we can alter the amplitude and phase of the electric field components of the reflected light. With 2 V applied bias, we achieved a linearly polarized reflected light with a polarization angle of -45°. Furthermore, we can tune the epsilon-near-zero wavelength of ITO at the vicinity of 1.55µm wavelength by increasing the bias to 5 V, which reducesy-component of the electric field to a negligible amplitude, thus, resulting in anx-polarized reflected light. Thus, with anx-polarized incident wave, we can dynamically switch among the three linear polarization states of the reflected wave, allowing a tri-state polarization switching (viz.y-polarization at 0 V, -45° linear polarization at 2 V, andx-polarization at 5 V). The Stokes parameters are also calculated to show a real-time control over light polarization. Thus, the proposed device paves the way toward the realization of dynamic polarization switching in nanophotonic applications.

12.
Magn Reson Imaging ; 100: 1-9, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924809

RESUMO

Magnetic resonance imaging (MRI) is an increasingly popular non-invasive technique for clinical diagnosis. Signal-to-noise ratio (SNR) is a crucial performance metric of MRI, improvement of which can be exchanged for increased image resolution or decreased scan time. Besides the progress in various hardware and software techniques for improving SNR in MRI scanners, use of metasurfaces as accessories has recently shown potential towards enhancing SNR by boosting local magnetic field in the scanned volume. Magnetic field enhancement over a larger depth from the skin is essential for imaging of deeper tissues, which can be facilitated by a specifically designed metasurface. Here we present such a metasurface with complementary-type resonant structures on the two sides of a high-permittivity dielectric, which substantially increases magnetic flux density on the skin (forty-five fold) that decays down to unity at a depth of 95 mm from the skin. This results in boosting of SNR up to forty-fold on the skin in 1.5 T MRI, while keeping tissue heating below the safety limit. An original analytical approach is formulated to readily estimate the SNR enhancement factor of this metasurface. Using the designed metasurface as an accessory for MRI scanners could help making MRI scans more efficient and affordable.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Imagens de Fantasmas
14.
ACS Sens ; 7(2): 622-631, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35157439

RESUMO

On the basis of an abundance of elemental plasmonic nanocrystals identifiable by their unique morphology and intrinsic optoelectronic properties, it is necessary to rationally tailor the structural parameters to optimize the functionalities of nanoassemblies for application as plasmonic circuits/devices. Among them, the plasmonic superlattice membrane has emerged as a novel optically active metamaterial, which is constructed by nanocrystals at a two-dimensional (2D) plane with a highly ordered structure and strong plasmonic coupling interactions. Here, we report on the fabrication of a novel plasmonic superlattice membrane using bimetallic core-shell nano-sea urchins (Nano-SEUs) as meta-atoms. Under the guidance of soft-ligand balancing in conjugation with drying-mediated self-assembly at the air/water interface, well-defined giant 2D superlattices with total lateral dimensions of up to 5 mm wide and 80 nm thick have been synthesized, corresponding to an aspect ratio of 62 500. Programmable morphology control over the Nano-SEUs has been achieved in high yield by rationally tuning the spiky branches as well as the thickness of the silver shell, allowing systematic variation of the plasmonic properties of the membrane. Such superlattice membranes exhibited a strong and reproducible surface-enhanced Raman spectroscopy (SERS) signal that originates from interparticle coupling and electric (E)-field enhancement, enabling an enhancement factor of up to 106. We also demonstrated that the fabricated membrane allows the label-free SERS detection of dopamine from 0.1 nM to 1 µM. Thus, this giant Nano-SEU assembled superlattice membrane can be used as a SERS substrate for on-spot biomarker detection, which paves a robust and inexpensive avenue for highly sensitive and reliable biomedical sensing and diagnostics.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Nanopartículas Metálicas/química , Prata , Análise Espectral Raman/métodos , Água
15.
Adv Mater ; 34(5): e2105630, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773416

RESUMO

Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported. Although the soft polystyrene (PS) is only 3 nm thick, it is elastic, robust, and permeable to aqueous solutes, while significantly slowing down their diffusion. PEN-associated palladium (Pd) crystallization follows a diffusion-controlled zero-order kinetics rather than a reaction-controlled first-order kinetics in bulk solution. Each individual PEN reactor has a volume in the zeptoliter range, which offers a unique confined environment, enabling a directional inward crystallization, in contrast to the conventional outward nucleation/growth that occurs in an unconfined bulk solution. This strategy makes it possible to generate a set of mono-, bi-, and trimetallic, and even semiconductor nanocrystals with tunable interior structures, which are difficult to achieve with normal systems based on bulk solutions.


Assuntos
Nanopartículas , Pontos Quânticos , Cristalização , Nanopartículas/química , Nanotecnologia , Paládio/química
16.
Light Sci Appl ; 9: 122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699610

RESUMO

Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.

17.
Chem Sci ; 11(35): 9563-9570, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34094221

RESUMO

We propose a nanoplasmonic platform that can be used for sensing trace levels of heavy metals in solutions via simple optical reflectivity measurements. The considered example is a lead sensor, which relies on the lead-mediated assembly of glutathione-functionalized gold nanoparticles (NPs) at a self-healing water/DCE liquid | liquid interface (LLI). Capillary forces tend to trap each NP at the LLI while the negatively charged ligands prevent the NPs settling too close to each other. In the presence of lead, due to chelation between the lead ion and glutathione ligand, the NPs assemble into a dense quasi-2D interfacial array. Such a dense assembly of plasmonic NPs can generate a remarkable broad-band reflectance signal, which is absent when NPs are adsorbed at the interface far apart from each other. The condensing effect of the LLI and the plasmonic coupling effect among the NP array gives rise to a dramatic enhancement of the reflectivity signals. Importantly, we show that our theory of the optical reflectivity from such an array of NPs works in perfect harmony with the physics and chemistry of the system with the key parameter being the interparticle distance at the interface. As a lead sensor, the system is fast, stable, and can achieve detection limits down to 14 ppb. Future alternative recognizing ligands can be used to build sister platforms for detecting other heavy metals.

18.
ACS Nano ; 14(1): 328-336, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31808672

RESUMO

Tuning the properties of optical metamaterials in real time is one of the grand challenges of photonics. Being able to do so will enable a class of adaptive photonic materials for use in applications such as surface enhanced Raman spectroscopy and reflectors/absorbers. One strategy to achieving this goal is based on the electrovariable self-assembly and disassembly of two-dimensional nanoparticle arrays at a metal | liquid interface. As expected, the structure results in plasmonic coupling between NPs in the array but perhaps as importantly between the array and the metal surface. In such a system, the density of the nanoparticle array can be reversibly controlled by the variation of electrode potential. Theory suggests that due to a collective plasmon-coupling effect  less than 1 V variation of electrode potential can give rise to a dramatic simultaneous change in optical reflectivity from ∼93% to ∼1% and the amplification of the SERS signal by up to 5 orders of magnitude. This is experimentally demonstrated using a platform based on the voltage-controlled assembly of 40 nm Au-nanoparticle arrays at a TiN/Ag electrode in contact with an aqueous electrolyte. We show that all the physics underpinning the behavior of this platform works precisely as suggested by the proposed theory, setting the electrochemical nanoplasmonics as a promising direction in photonics research.

19.
Adv Mater ; 31(28): e1900989, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31070276

RESUMO

2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry-breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side. Such asymmetric metallic structures lead to distinct wetting and optical properties as well as surface-enhanced Raman scattering (SERS) effects. In particular, the SERS enhancement of the nanocube side is about 20-fold of that of the nanostar side, likely due to the combined "hot spot + lightening-rod" effects. This is nearly 700-fold of SERS enhancement as compared with the symmetric nanocube superlattices without Janus structures.

20.
ACS Appl Mater Interfaces ; 11(25): 22754-22760, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31134791

RESUMO

Development and use of metamaterials have been gaining prominence in large part due to the possibility of creating platforms with "disruptive" and unique optical properties. However, to date, the majority of such systems produced using micro or nanotechnology are static and can only perform certain target functions. Next-generation multifunctional smart optical metamaterials are expected to have tunable elements with the possibility of controlling the optical properties in real time via variation in parameters such as pressure, mechanical stress, and voltage or through nonlinear optical effects. Here, we address this challenge by developing a thermally controlled optical switch, based on the self-assembly of poly( N-isopropylacrylamide)-functionalized gold nanoparticles on a planar macroscale gold substrate. We show that such meta-surfaces can be tuned to exhibit substantial changes in the optical properties in terms of both wavelength and intensity, through the temperature-controlled variation of the interparticle distance within the nanoparticle monolayer as well as its separation from the substrate. This change is based on temperature-induced auxetic expansion and contraction of the functional ligands. Such a system has potential for numerous applications, ranging from thermal sensors to regulated light harnessing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA