Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Neurovirol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884890

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of HIV and cocaine-induced transcriptomes in primary cortical cultures revealed significant overexpression of the macrophage-specific gene aconitate decarboxylase 1 (Acod1). The ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. Itaconate then facilitates cytokine production and activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. However, the immunometabolic function of itaconate was unexplored in HIV and cocaine-exposed microglia. We assessed the potential of 4-octyl-itaconate (4OI), a cell-penetrable ester form of itaconate known for its anti-inflammatory properties. When primary cortical cultures exposed to Tat and cocaine were treated with 4OI, microglial cell number increased and the morphological altercations induced by Tat and cocaine were reversed. Microglial cells also appeared more ramified, resembling the quiescent microglia. 4OI treatment inhibited secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling determined that Nrf2 target genes were significantly activated in Tat and 4OI treated cultures relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development to treat HAND coupled with CUD comorbidities.

3.
Anal Chem ; 89(3): 1486-1492, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208285

RESUMO

The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.


Assuntos
Líquidos Corporais/química , Análise Espectral Raman , Análise por Conglomerados , Feminino , Medicina Legal , Humanos , Masculino , Redes Neurais de Computação , Análise de Componente Principal , Máquina de Vetores de Suporte
4.
Biopolymers ; 103(6): 339-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25656820

RESUMO

The design of biomimetic materials through molecular self-assembly is a growing area of modern nanotechnology. With problems of protein folding, self-assembly, and sequence-structure relationships as essential in nanotechnology as in biology, the effect of the nucleation of ß-hairpin formation by proline on the folding process has been investigated in model studies. Previously such studies were limited to investigations of the influence of proline on the formation of turns in short peptide sequences. The effect of proline-based triads on the folding of an 11-kDa amyloidogenic peptide GH6[(GA)3GY(GA)3GE]8 GAH6 (YE8) was investigated by selective substitution of the proline-substituted triads at the γ-turn sites. The folding and fibrillation of the singly proline-substituted polypeptides, e.g., GH6-[(GA)3GY(GA)3GE]7(GA)3GY(GA)3PD-GAH6 (8PD), and doubly proline-substituted polypeptides, e.g., GH6-[(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD[(GA)3GY(GA)3GE]3(GA)3GY(GA)3PD-GAH6 (4,8PD), were directly monitored by circular dichroism and deep UV resonance Raman and fluorescence spectroscopies. These findings were used to identify the essential folding domains, i.e., the minimum number of ß-strands necessary for stable folding. These experimental findings may be especially useful in the design and construction of peptidic materials for a wide range of applications as well as in understanding the mechanisms of folding critical to fibril formation.


Assuntos
Peptídeos/química , Prolina/química , Sequência de Aminoácidos , Dicroísmo Circular , Cinética , Dobramento de Proteína , Estrutura Secundária de Proteína
5.
J Clin Invest ; 134(10)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546787

RESUMO

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Assuntos
Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Neoplasias de Próstata Resistentes à Castração , Inibidores de Proteínas Quinases , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Camundongos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
6.
Anal Chem ; 85(15): 7287-94, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23745950

RESUMO

The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

7.
FEBS Open Bio ; 13(3): 556-569, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723232

RESUMO

Evaluation of gene co-regulation is a powerful approach for revealing regulatory associations between genes and predicting biological function, especially in genetically diverse samples. Here, we applied this strategy to identify transcripts that are co-regulated with unfolded protein response (UPR) genes in cultured fibroblasts from outbred deer mice. Our analyses showed that the transcriptome associated with RASSF1, a tumor suppressor involved in cell cycle regulation and not previously linked to UPR, is highly correlated with the transcriptome of several UPR-related genes, such as BiP/GRP78, DNAJB9, GRP94, ATF4, DNAJC3, and CHOP/DDIT3. Conversely, gene ontology analyses for genes co-regulated with RASSF1 predicted a previously unreported involvement in UPR-associated apoptosis. Bioinformatic analyses indicated the presence of ATF4-binding sites in the RASSF1 promoter, which were shown to be operational using chromatin immunoprecipitation. Reporter assays revealed that the RASSF1 promoter is responsive to ATF4, while ablation of RASSF1 mitigated the expression of the ATF4 effector BBC3 and abrogated tunicamycin-induced apoptosis. Collectively, these results implicate RASSF1 in the regulation of endoplasmic reticulum stress-associated apoptosis downstream of ATF4. They also illustrate the power of gene coordination analysis in predicting biological functions and revealing regulatory associations between genes.


Assuntos
Fator 4 Ativador da Transcrição , Estresse do Retículo Endoplasmático , Proteínas Supressoras de Tumor , Resposta a Proteínas não Dobradas , Proteínas de Ciclo Celular/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Transcriptoma/genética , Resposta a Proteínas não Dobradas/genética , Fator 4 Ativador da Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Cell Death Differ ; 30(5): 1305-1319, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864125

RESUMO

Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.


Assuntos
Neoplasias da Mama , Fuso Acromático , Humanos , Feminino , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias da Mama/patologia , Proteína Supressora de Tumor p53/metabolismo , Centrossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo
9.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808776

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

10.
Anal Chem ; 84(10): 4334-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22448891

RESUMO

Near-infrared (NIR) Raman microspectroscopy combined with advanced statistics was used to differentiate gunshot residue (GSR) particles originating from different caliber ammunition. The firearm discharge process is analogous to a complex chemical reaction. The reagents of this process are represented by the chemical composition of the ammunition, firearm, and cartridge case. The specific firearm parameters determine the conditions of the reaction and thus the subsequent product, GSR. We found that Raman spectra collected from these products are characteristic for different caliber ammunition. GSR particles from 9 mm and 0.38 caliber ammunition, collected under identical discharge conditions, were used to demonstrate the capability of confocal Raman microspectroscopy for the discrimination and identification of GSR particles. The caliber differentiation algorithm is based on support vector machines (SVM) and partial least squares (PLS) discriminant analyses, validated by a leave-one-out cross-validation method. This study demonstrates for the first time that NIR Raman microspectroscopy has the potential for the reagentless differentiation of GSR based upon forensically relevant parameters, such as caliber size. When fully developed, this method should have a significant impact on the efficiency of crime scene investigations.


Assuntos
Armas de Fogo , Análise Espectral Raman , Algoritmos , Antimônio/química , Bário/química , Análise Discriminante , Chumbo/química , Análise dos Mínimos Quadrados , Máquina de Vetores de Suporte
11.
Biomacromolecules ; 13(5): 1503-9, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22515261

RESUMO

Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of ß-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and ß-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.


Assuntos
Amiloide/química , Raios Ultravioleta , Modelos Moleculares , Análise Espectral Raman
12.
Methods ; 52(1): 23-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20580825

RESUMO

Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms.


Assuntos
Muramidase/química , Estrutura Secundária de Proteína , Proteínas/química , Análise Espectral Raman/métodos , Amiloide/ultraestrutura , Teorema de Bayes , Medição da Troca de Deutério , Espectrofotometria Ultravioleta
13.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661243

RESUMO

The unfolded protein response (UPR) is involved in the pathogenesis of metabolic disorders, yet whether variations in the UPR among individuals influence the propensity for metabolic disease remains unexplored. Using outbred deer mice as a model, we show that the intensity of UPR in fibroblasts isolated early in life predicts the extent of body weight gain after high-fat diet (HFD) administration. Contrary to those with intense UPR, animals with moderate UPR in fibroblasts and therefore displaying compromised stress resolution did not gain body weight but developed inflammation, especially in the skin, after HFD administration. Fibroblasts emerged as potent modifiers of this differential responsiveness to HFD, as indicated by the comparison of the UPR profiles of fibroblasts responding to fatty acids in vitro, by correlation analyses between UPR and proinflammatory cytokine-associated transcriptomes, and by BiP (also known as HSPA5) immunolocalization in skin lesions from animals receiving HFD. These results suggest that the UPR operates as a modifier of an individual's propensity for body weight gain in a manner that, at least in part, involves the regulation of an inflammatory response by skin fibroblasts. This article has an associated First Person interview with the first author of the paper.


Assuntos
Estresse do Retículo Endoplasmático , Fibroblastos/patologia , Inflamação/patologia , Pele/patologia , Aumento de Peso , Animais , Biomarcadores/sangue , Citocinas/metabolismo , Dieta Hiperlipídica , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/farmacologia , Fibroblastos/efeitos dos fármacos , Inflamação/sangue , Leptina/sangue , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Peromyscus , Transcriptoma/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119188, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33268033

RESUMO

Current Alzheimer's disease (AD) diagnostics is based on clinical assessments, imaging and neuropsychological tests that are efficient only at advanced stages of the disease. Early diagnosis of AD will provide decisive opportunities for preventive treatment and development of disease-modifying drugs. Cerebrospinal fluid (CSF) is in direct contact with the human brain, where the deadly pathological process of the disease occurs. As such, the CSF biochemical composition reflects specific changes associated with the disease and is therefore the most promising body fluid for AD diagnostic test development. Here, we describe a new method to diagnose AD based on CSF via near infrared (NIR) Raman spectroscopy in combination with machine learning analysis. Raman spectroscopy is capable of probing the entire biochemical composition of a biological fluid at once. It has great potential to detect small changes specific to AD, even at the earliest stages of pathogenesis. NIR Raman spectra were measured of CSF samples acquired from 21 patients diagnosed with AD and 16 healthy control (HC) subjects. Artificial neural networks (ANN) and support vector machine discriminant analysis (SVM-DA) statistical methods were used for differentiation purposes, with the most successful results allowing for the differentiation of AD and HC subjects with 84% sensitivity and specificity. Our classification models show high discriminative power, suggesting the method has a great potential for AD diagnostics. The reported Raman spectroscopic examination of CSF can complement current clinical tests, making early AD detection fast, accurate, and inexpensive. While this study shows promise using a small sample set, further method validation on a larger scale is required to indicate the true strength of the approach.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Diagnóstico Precoce , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Análise Espectral Raman
15.
Sensors (Basel) ; 10(4): 2869-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319277

RESUMO

Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.


Assuntos
Líquidos Corporais/química , Saliva/química , Sêmen/química , Análise Discriminante , Medicina Legal/métodos , Humanos , Modelos Teóricos , Análise Espectral Raman/métodos
16.
Biochem Pharmacol ; 182: 114280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049245

RESUMO

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Assuntos
Azepinas/farmacologia , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo
17.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31802418

RESUMO

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Assuntos
Azepinas/farmacologia , Cocaína/toxicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Imidazóis/farmacologia , Microglia/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/enzimologia , Animais , Azepinas/uso terapêutico , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Inibidores da Captação de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Feminino , Imidazóis/uso terapêutico , Masculino , Microglia/enzimologia , Ratos , Ratos Sprague-Dawley
18.
Nat Commun ; 11(1): 2416, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415208

RESUMO

Chemoresistance is a major obstacle in triple negative breast cancer (TNBC), the most aggressive breast cancer subtype. Here we identify hypoxia-induced ECM re-modeler, lysyl oxidase (LOX) as a key inducer of chemoresistance by developing chemoresistant TNBC tumors in vivo and characterizing their transcriptomes by RNA-sequencing. Inhibiting LOX reduces collagen cross-linking and fibronectin assembly, increases drug penetration, and downregulates ITGA5/FN1 expression, resulting in inhibition of FAK/Src signaling, induction of apoptosis and re-sensitization to chemotherapy. Similarly, inhibiting FAK/Src results in chemosensitization. These effects are observed in 3D-cultured cell lines, tumor organoids, chemoresistant xenografts, syngeneic tumors and PDX models. Re-expressing the hypoxia-repressed miR-142-3p, which targets HIF1A, LOX and ITGA5, causes further suppression of the HIF-1α/LOX/ITGA5/FN1 axis. Notably, higher LOX, ITGA5, or FN1, or lower miR-142-3p levels are associated with shorter survival in chemotherapy-treated TNBC patients. These results provide strong pre-clinical rationale for developing and testing LOX inhibitors to overcome chemoresistance in TNBC patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Colágeno/química , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Integrinas/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Transplante de Neoplasias , RNA-Seq , Transdução de Sinais
19.
Mol Biol Cell ; 30(14): 1705-1715, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067156

RESUMO

Numerous studies have highlighted the self-centering activities of individual microtubule (MT) arrays in animal cells, but relatively few works address the behavior of multiple arrays that coexist in a common cytoplasm. In multinucleated Dictyostelium discoideum cells, each centrosome organizes a radial MT network, and these networks remain separate from one another. This feature offers an opportunity to reveal the mechanism(s) responsible for the positioning of multiple centrosomes. Using a laser microbeam to eliminate one of the two centrosomes in binucleate cells, we show that the unaltered array is rapidly repositioned at the cell center. This result demonstrates that each MT array is constantly subject to centering forces and infers a mechanism to balance the positions of multiple arrays. Our results address the limited actions of three kinesins and a cross-linking MAP that are known to have effects in maintaining MT organization and suggest a simple means used to keep the arrays separated.


Assuntos
Centrossomo/metabolismo , Dictyostelium/citologia , Dictyostelium/metabolismo , Interfase , Terapia a Laser , Fenômenos Biomecânicos , Núcleo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Mutação/genética , Proteínas de Protozoários/metabolismo
20.
J Am Chem Soc ; 130(18): 5852-3, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18410104

RESUMO

Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.


Assuntos
Amiloide/química , Peptídeos/química , Engenharia de Proteínas/métodos , Análise Espectral Raman/métodos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA