Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 117(7): 1529-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575945

RESUMO

Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monócitos/enzimologia , Estabilidade de RNA/efeitos dos fármacos , Sulfotransferases/biossíntese , Linhagem Celular Tumoral , Citocinas/biossíntese , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Monócitos/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Glycobiology ; 25(5): 502-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25504800

RESUMO

Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.


Assuntos
Glicosaminoglicanos/metabolismo , Macrófagos/metabolismo , Sulfotransferases/metabolismo , Células Cultivadas , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ativação de Macrófagos , Macrófagos/enzimologia , Macrófagos/imunologia , Sulfotransferases/genética
3.
J Pharm Anal ; 13(5): 494-502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305783

RESUMO

Monitoring of host cell proteins (HCPs) during the manufacturing of monoclonal antibodies (mAb) has become a critical requirement to provide effective and safe drug products. Enzyme-linked immunosorbent assays are still the gold standard methods for the quantification of protein impurities. However, this technique has several limitations and does, among others, not enable the precise identification of proteins. In this context, mass spectrometry (MS) became an alternative and orthogonal method that delivers qualitative and quantitative information on all identified HCPs. However, in order to be routinely implemented in biopharmaceutical companies, liquid chromatography-MS based methods still need to be standardized to provide highest sensitivity and robust and accurate quantification. Here, we present a promising MS-based analytical workflow coupling the use of an innovative quantification standard, the HCP Profiler solution, with a spectral library-based data-independent acquisition (DIA) method and strict data validation criteria. The performances of the HCP Profiler solution were compared to more conventional standard protein spikes and the DIA approach was benchmarked against a classical data-dependent acquisition on a series of samples produced at various stages of the manufacturing process. While we also explored spectral library-free DIA interpretation, the spectral library-based approach still showed highest accuracy and reproducibility (coefficients of variation < 10%) with a sensitivity down to the sub-ng/mg mAb level. Thus, this workflow is today mature to be used as a robust and straightforward method to support mAb manufacturing process developments and drug products quality control.

4.
Int J Biochem Cell Biol ; 80: 57-65, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27693418

RESUMO

Heparan sulfate (HS) 6-O-endosulfatases (Sulfs) have emerged recently as critical regulators of many physiological and pathological processes. By removing 6-O-sulfates from specific HS sequences, they modulate the activities of a variety of growth factors and morphogens, including fibroblast growth factor (FGF)-1. However, little is known about the functions of Sulfs in inflammation. Tumour-necrosis factor (TNF)-α plays an important role in regulating the behaviour of fibroblasts. In this study, we examined the effect of this inflammatory cytokine on the expression of Sulfs in human MRC-5 fibroblasts. Compositional analysis of HS from TNF-α-treated cells showed a strong reduction in the amount of the trisulfated UA2S-GlcNS6S disaccharide, which suggested a selective reaction of 6-O-desulfation. Real-time PCR analysis revealed that TNF-α increased Sulf-1 expression in a dose- and time-dependent manner, via a mechanism involving NF-ĸB, ERK1/2 and p38 MAPK. In addition, we confirmed that cell stimulation with TNF-α was accompanied by the secretion of an active form of Sulf-1. To study the function of Sulf- 1, we examined the responses induced by FGF-1. We showed that ERK1/2 activation and cell proliferation were markedly reduced in TNF-α-treated MRC-5 cells compared with untreated cells. Silencing the expression of Sulf-1 by RNA interference restored the responses induced by FGF-1, which indicated that TNF-α-mediated induction of the sulfatase indeed resulted in alterations of HS biological properties. Taken together, our results indicate that Sulf-1 is responsive to TNF-α stimulation and may function as an autocrine regulator of fibroblast expansion in the course of an inflammatory response.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular , Humanos , Sulfotransferases/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA