RESUMO
The compound 3a,10b-dihydro-1H-cyclopenta[b]naphtho[2,3-d]furan-5,10-dione (IVS320) is a naphthoquinone with antifungal and antichagasic potential, which however has low aqueous solubility. To increase bioavailability, inclusion complexes with ß-cyclodextrin (ßCD) and methyl-ß-cyclodextrin (MßCD) were prepared by physical mixture (PM), kneading (KN) and rotary evaporation (RE), and their in vitro anti-SARS-CoV-2 and antichagasic potential was assessed. The formation of inclusion complexes led to a change in the physicochemical characteristics compared to IVS320 alone as well as a decrease in crystallinity degree that reached 74.44% for the IVS320-MßCD one prepared by RE. The IVS320 and IVS320-MßCD/RE system exhibited anti-SARS-CoV-2 activity, showing half maximal effective concentrations (EC50) of 0.47 and 1.22 µg/mL, respectively. Molecular docking simulation suggested IVS320 ability to interact with the SARS-CoV-2 viral protein. Finally, the highest antichagasic activity, expressed as percentage of Tripanosoma cruzi growth inhibition, was observed with IVS320-ßCD/KN (70%) and IVS320-MßCD/PM (72%), while IVS320 alone exhibited only approximately 48% inhibition at the highest concentration (100 µg/mL).
RESUMO
Chagas disease is an endemic parasitic infection that occurs in 21 Latin American countries. New therapies for this disease are urgently needed, as the only two drugs available (nifurtimox and benznidazol) have high toxicity and variable efficacy in the disease's chronic phase. Recently, a new chemical entity (NCE) named Pyranaphthoquinone (IVS320) was synthesized from lawsone. We report herein, a detailed study of the physicochemical properties and in vitro trypanocidal activity of IVS320. A series of assays were performed for characterization, where thermal, diffractometric, and morphological analysis were performed. In addition, the solubility, permeability, and hygroscopicity of IVS320 were determined. The results show that its poor solubility and low permeability may be due to its high degree of crystallinity (99.19%), which might require the use of proper techniques to increase the IVS320's aqueous solubility and permeability. The trypanocidal activity study demonstrated that IVS320 is more potent than the reference drug benznidazole, with IC50/24 h of 1.49 ± 0.1 µM, which indicates that IVS320 has potential as a new drug candidate for the treatment of Chagas disease.
Assuntos
Doença de Chagas/tratamento farmacológico , Naftoquinonas/química , Tripanossomicidas/química , Trypanosoma/efeitos dos fármacos , Sítios de Ligação , Humanos , Modelos Moleculares , Estrutura Molecular , Naftoquinonas/farmacologia , Permeabilidade , Ligação Proteica , Solubilidade , Tripanossomicidas/farmacologiaRESUMO
The aim of this work was to study the stability and morphological properties of polystyrene latex containing kaolinite as a filler during the process of synthesis of nanocomposites viaemulsion polymerization. Nanocomposites with 1, 3, and 5 wt% of kaolinite were prepared. Latexes with 1 to 3 wt% of kaolinite were stable during the polymerization reaction. Hydrodynamic diameters of 93.68 and 82.11 nm were found for latexes with 1 and 3 wt% of kaolinite, respectively. The quantities of 1 to 3 wt% of kaolinite added during the reaction did not influence the reaction conversion curves or the number of particles. X-ray diffraction (XRD) and unconventional techniques of scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) showed the presence of exfoliated and intercalated structures of the kaolinite.
RESUMO
Abstract Passiflora nitida Kunth, an Amazonian Passiflora species, is little studied, although the specie's high biological potential. Herein the plant's pharmacognostic characterization, extract production, antioxidant potential evaluation, and application of this extract in cosmetic products is reported. The physical chemical parameters analyzed were particle size by sieve analysis, loss through drying, extractive yield, total ash content, laser granulometry, specific surface area and pore diameter (SBET), differential scanning calorimetry, thermogravimetry (TG), and wave dispersive X-Ray fluorescence (WDXRF). Total phenol/flavonoid content, LC-MS/MS analysis, DPPH and ABTS antioxidant radical assays, cytotoxicity, melanin, and tyrosinase inhibition in melanocytes test provided evidence to determine the content of the major constituent. P. nitida dry extract provided a fine powder with mesopores determined by SBET, with the TG curve showing five stages of mass loss. The antioxidant potential ranged between 23.5-31.5 mgâmL-1 and tyrosinase inhibition between 400-654 µgâmL-1. The species presented an antimelanogenic effect and an inhibitory activity of cellular tyrosinase (26.6%) at 25 µg/mL. The LC-MS/MS analysis of the spray-dried extract displayed the main and minor phenolic compounds constituting this sample. The results indicate that P. nitida extract has promising features for the development of cosmetic formulations