Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(10)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39458323

RESUMO

Over the past decade, an increasing number of studies have emphasized the importance of the host microbiome in influencing organismal health and development. Aligned with this understanding, our study aimed to investigate the potential association between the turbot (Scophthalmus maximus) phenotypic traits and the post-larval bacteriome. Turbot post-larvae were sampled from twenty randomly selected production cycles thirty days after hatching (DAH) across multiple post-larval production batches over a three-month period (April to June). Fish were selectively sampled based on five phenotypic traits, namely, normal, large, small, malformed, and depigmented. Our results showed that small-sized post-larvae had significantly higher bacterial phylogenetic diversity in their bacterial communities than all other phenotypes. A more in-depth compositional analysis also revealed specific associations between certain bacterial taxa and fish phenotypes. For example, the genera Aliivibrio and Sulfitobacter were enriched in small-sized post-larvae, while the family Micrococcaceae were predominantly found in larger post-larvae. Furthermore, genus Exiguobacterium was linked to depigmented larvae, and genus Pantoea was more prevalent in normal post-larvae. These observations underscore the importance of further research to understand the roles of these bacterial taxa in larval growth and phenotypic differentiation. Such insights could contribute to developing microbiome modulation strategies, which may enhance turbot post-larval health and quality and improve larviculture production.

2.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366951

RESUMO

Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.


Assuntos
Asteraceae , Isoquinolinas , Poríferos , Sulfonamidas , Humanos , Animais , Substâncias Húmicas , Ecossistema , Temperatura
3.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838485

RESUMO

Live feed enrichments are often used in fish larvicultures as an optimized source of essential nutrients to improve larval growth and survival. In addition to this, they may also play an important role in structuring larval-associated microbial communities and may help improve their resistance to diseases. However, there is limited information available on how larval microbial communities and larviculture water are influenced by different live feed enrichments. In the present study, we investigated the effects of two commercial rotifer enrichments (ER) on turbot (Scophthalmus maximus) larval and post-larval gut-associated bacterial communities during larviculture production. We evaluated their effects on bacterial populations related to known pathogens and beneficial bacteria and their potential influence on the composition of bacterioplankton communities during larval rearing. High-throughput 16S rRNA gene sequencing was used to assess the effects of different rotifer enrichments (ER1 and ER2) on the structural diversity of bacterial communities of the whole turbot larvae 10 days after hatching (DAH), the post-larval gut 30 DAH, and the larviculture water. Our results showed that different rotifer feed enrichments were associated with significant differences in bacterial composition of turbot larvae 10 DAH, but not with the composition of larval gut communities 30 DAH or bacterioplankton communities 10 and 30 DAH. However, a more in-depth taxonomic analysis showed that there were significant differences in the abundance of Vibrionales in both 10 DAH larvae and in the 30 DAH post-larval gut fed different RE diets. Interestingly, the ER1 diet had a higher relative abundance of specific amplicon sequence variants (ASVs) related to potential Vibrio-antagonists belonging to the Roseobacter clade (e.g., Phaeobacter and Ruegeria at 10 DAH and Sulfitobacter at 30 DAH). In line with this, the diet was also associated with a lower relative abundance of Vibrio and a lower mortality. These results suggest that rotifer diets can affect colonization by Vibrio members in the guts of post-larval turbot. Overall, this study indicates that live feed enrichments can have modulatory effects on fish bacterial communities during the early stages of development, which includes the relative abundances of pathogenic and antagonist taxa in larviculture systems.

4.
PLoS One ; 15(3): e0230433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231379

RESUMO

The Iberian wolf (Canis lupus signatus) is a top predator that inhabits the Iberian Peninsula. In Portugal, its numbers and distribution declined throughout the 20th century, due to human persecution, habitat degradation and prey decline, which have led to higher predation rates of livestock in the remaining packs. In Montesinho Natural Park (northeast Portugal), wild ungulate populations have been increasing in the last years, which may have led wolf to predate upon them. In order to assess Iberian wolf diet in this area, 85 wolf scats were collected from transects distributed throughout the study area in two periods between November 2017 and August 2019. Scat analysis indicated a high predation on wild ungulates, where the frequency of occurrence showed that roe deer was the most consumed prey (44%), followed by red deer (26%) and wild boar (24%). Domestic/wild cat (6%), domestic goat and stone marten (5%) were consumed in lower quantities. It was found a higher selection towards roe deer (D = 0.71) and this was the only prey item which was significantly dependent of the season of the year (χ2 = 16.95, df = 3, p < 0.001). This is the first study in Portugal where was recorded that wolves feed mainly on wild ungulates. We conclude that lower livestock predation may be correlated with higher wild ungulates densities in our study area, as well as suitable husbandry practices, leading to a shift on Iberian wolf diet from mainly livestock on previous studies to wild ungulates.


Assuntos
Espécies em Perigo de Extinção , Comportamento Predatório/fisiologia , Lobos/fisiologia , Animais , Cervos , Dieta , Ecossistema , Humanos , Gado , Densidade Demográfica , Estações do Ano , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA