Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 303(8): 443-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23827141

RESUMO

The intestinal opportunistic pathogen Bacteroides fragilis is among the most aerotolerant species of strict anaerobic bacteria and survives exposure to atmospheric oxygen for up to 72h. Under these circumstances, a strong oxygen stress response (OSR) mechanism is activated and the expression of as much as 45% of B. fragilis genes is altered. One of the most important regulators of this response is the product of the oxyR gene, but other regulation systems are in place during the OSR. The MarR family of transcriptional regulators has been shown to control several physiological events in bacteria, including response to stress conditions. In B. fragilis, at least three homologs of MarR regulators are present, one of which, bmoR, is upregulated during oxidative stress independently of oxyR. In this study, we demonstrate that the inactivation of the bmoR gene in B. fragilis diminishes its ability to withstand oxidative stress caused either by exposure to atmospheric oxygen or hydrogen peroxide. Recovery of growth rate on pre-oxidized media under anaerobiosis is slower than that observed in parental strain. Addition of hydrogen peroxide has a similar effect on the growth rate. Complementation of the mutant strain partially recovered the oxygen resistance phenotype, but the overexpression of the gene in the parental strain was also deleterious to a lesser extent. Our results indicate that BmoR has a role in the OSR in B. fragilis, particularly in the initial stages of oxygen exposure.


Assuntos
Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Anaerobiose , Bacteroides fragilis/genética , Bacteroides fragilis/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Oxigênio/metabolismo , Oxigênio/toxicidade , Fatores de Transcrição/genética
2.
Braz J Microbiol ; 49(1): 200-206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28847541

RESUMO

Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/isolamento & purificação , Bacteroides fragilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Testes de Sensibilidade Microbiana , Proteínas Repressoras/metabolismo
3.
Braz. j. microbiol ; 49(1): 200-206, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889189

RESUMO

ABSTRACT Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.


Assuntos
Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Infecções por Bacteroides/microbiologia , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/isolamento & purificação , Bacteroides fragilis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Testes de Sensibilidade Microbiana , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA