Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EJNMMI Res ; 14(1): 29, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498285

RESUMO

BACKGROUND: Cancer stem cells play an important role in driving tumor growth and treatment resistance, which makes them a promising therapeutic target to prevent cancer recurrence. Emerging cancer stem cell-targeted therapies would benefit from companion diagnostic imaging probes to aid in patient selection and monitoring response to therapy. To this end, zirconium-89-radiolabeled immunoPET probes that target the cancer stem cell-antigen CD133 were developed using fully human antibody and antibody scFv-Fc scaffolds. RESULTS: ImmunoPET probes [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1), [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3), and [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) were radiolabeled with zirconium-89 (radiochemical yield 42 ± 5%, 97 ± 2%, 86 ± 12%, respectively) and each was isolated in > 97% radiochemical purity with specific activities of 120 ± 30, 270 ± 90, and 200 ± 60 MBq/mg, respectively. In vitro binding assays showed a low-nanomolar binding affinity of 0.6 to 1.1 nM (95% CI) for DFO-RW03IgG (CA = 0.7 ± 0.1), 0.3 to 1.9 nM (95% CI) for DFO-RW03IgG (CA = 3.0 ± 0.3), and 1.5 to 3.3 nM (95% CI) for DFO-RW03scFv - Fc (C/A = 0.3). Biodistribution studies found that [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) exhibited the highest tumor uptake (23 ± 4, 21 ± 2, and 23 ± 4%ID/g at 24, 48, and 72 h, respectively) and showed low uptake (< 6%ID/g) in all off-target organs at each timepoint (24, 48, and 72 h). Comparatively, [89Zr]-DFO-RW03IgG (CA = 0.7 ± 0.1) and [89Zr]-DFO-RW03IgG (CA = 3.0 ± 0.3) both reached maximum tumor uptake (16 ± 3%ID/g and 16 ± 2%ID/g, respectively) at 96 h p.i. and showed higher liver uptake (10.2 ± 3%ID/g and 15 ± 3%ID/g, respectively) at that timepoint. Region of interest analysis to assess PET images of mice administered [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) showed that this probe reached a maximum tumor uptake of 22 ± 1%ID/cc at 96 h, providing a tumor-to-liver ratio that exceeded 1:1 at 48 h p.i. Antibody-antigen mediated tumor uptake was demonstrated through biodistribution and PET imaging studies, where for each probe, co-injection of excess unlabeled RW03IgG resulted in > 60% reduced tumor uptake. CONCLUSIONS: Fully human CD133-targeted immunoPET probes [89Zr]-DFO-RW03IgG and [89Zr]-DFO-RW03scFv - Fc accumulate in CD133-expressing tumors to enable their delineation through PET imaging. Having identified [89Zr]-DFO-RW03scFv - Fc (CA = 2.9 ± 0.3) as the most attractive construct for CD133-expressing tumor delineation, the next step is to evaluate this probe using patient-derived tumor models to test its detection limit prior to clinical translation.

2.
J Med Chem ; 66(9): 6025-6036, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129217

RESUMO

A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.


Assuntos
Compostos Heterocíclicos , Técnicas Fotoacústicas , Diagnóstico por Imagem , Osso e Ossos/diagnóstico por imagem , Difosfonatos
3.
Toxicol Lett ; 259: 11-20, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27452280

RESUMO

Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1ß and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1ß and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case.


Assuntos
Apoptose/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Nanopartículas Metálicas/química , Óxido de Zinco/farmacologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular , Eosinófilos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-8/genética , Óxido de Zinco/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA