Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hypertens ; 32(6): 579-587, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30875426

RESUMO

BACKGROUND: Acetylcholinesterase inhibition prevents autonomic imbalance, reduces inflammation, and attenuates the development of hypertension. Considering that vascular dysfunction is a crucial feature of arterial hypertension, we investigated the effects of chronic administration of acetylcholinesterase inhibitors-pyridostigmine or donepezil-on vascular reactivity of spontaneously hypertensive rats (SHR). METHODS: Endothelium-dependent relaxant responses to acetylcholine (ACh) and contractile responses induced by electric field stimulation (EFS) and alpha-adrenergic agonist were studied in mesenteric resistance arteries from SHR and Wistar Kyoto rats. SHR were treated for 16 weeks with vehicle, pyridostigmine (1.5 mg/kg/day) or donepezil (1.4 mg/kg/day). RESULTS: Pyridostigmine and donepezil decreased the vasoconstrictor responses to EFS, which were increased in vehicle-treated SHR. Acetylcholinesterase inhibition increased the modulatory effects of nitric oxide (NO) on SHR vascular reactivity, that is, N(ω)-nitro-(L)-arginine methyl ester (L-NAME) increased EFS-induced contractions and reduced ACh-induced relaxation, with more significant effects in pyridostigmine- and donepezil-treated SHR. The acetylcholinesterase inhibitors also decreased vascular reactive oxygen species levels. CONCLUSIONS: This study demonstrates for the first time that long-term administration of acetylcholinesterase inhibitors, pyridostigmine or donepezil, attenuates vascular reactivity dysfunction in SHR by decreasing reactive oxygen species generation and increasing NO bioavailability; possibly via increased endothelial NO synthase activity, and inhibition of NADPH oxidase activity.


Assuntos
Anti-Hipertensivos/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipertensão/prevenção & controle , Artérias Mesentéricas/efeitos dos fármacos , Brometo de Piridostigmina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
Br J Pharmacol ; 174(10): 1104-1115, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28222221

RESUMO

BACKGROUND AND PURPOSE: Angiotensin II (Ang II), whose generation largely depends on angiotensin-converting enzyme (ACE) activity, mediates most of the renin-angiotensin-system (RAS) effects. Elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II-generation in resistance arteries are unknown. We hypothesized that ELA-2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. EXPERIMENTAL APPROACH: Concentration-effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA-2 knockout (ELA-2KO) mice subjected to left anterior descending coronary artery ligation (MI). KEY RESULTS: MI size was similar in WT and ELA-2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA-2KO mice. Ang I-induced contractions increased in WT mice subjected to MI (MI-WT) compared with sham-WT mice. No differences were observed in Ang I reactivity between arteries from ELA-2KO and ELA-2KO subjected to MI (MI-ELA-2KO). Ang I contractions increased in arteries from MI-WT versus MI-ELA-2KO mice. Chymostatin attenuated Ang I-induced vascular contractions in WT mice, but did not affect Ang I responses in ELA-2KO arteries. CONCLUSIONS AND IMPLICATIONS: These results provide the first evidence that ELA-2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA-2 as a key player in ACE-independent dysregulation of the RAS.


Assuntos
Angiotensina II/metabolismo , Artérias Mesentéricas/metabolismo , Infarto do Miocárdio/metabolismo , Serina Endopeptidases/metabolismo , Angiotensina II/genética , Animais , Vasos Coronários/metabolismo , Vasos Coronários/cirurgia , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina Endopeptidases/deficiência
3.
Artigo em Inglês | MEDLINE | ID: mdl-28439500

RESUMO

Sepsis is a severe syndrome that arises when the host response to an insult is exacerbated, leading to organ failure and frequently to death. How a chronic infection that causes a prolonged Th1 expansion affects the course of sepsis is unknown. In this study, we showed that mice chronically infected with Toxoplasma gondii were more susceptible to sepsis induced by cecal ligation and puncture (CLP). Although T. gondii-infected mice exhibited efficient control of the bacterial burden, they showed increased mortality compared to the control groups. Mechanistically, chronic T. gondii infection induces the suppression of Th2 lymphocytes via Gata3-repressive methylation and simultaneously induces long-lived IFN-γ-producing CD4+ T lymphocytes, which promotes systemic inflammation that is harmful during CLP. Chronic T. gondii infection intensifies local and systemic Th1 cytokines as well as nitric oxide production, which reduces systolic and diastolic arterial blood pressures after sepsis induction, thus predisposing the host to septic shock. Blockade of IFN-γ prevented arterial hypotension and prolonged the host lifespan by reducing the cytokine storm. Interestingly, these data mirrored our observation in septic patients, in which sepsis severity was positively correlated to increased levels of IFN-γ in patients who were serologically positive for T. gondii. Collectively, these data demonstrated that chronic infection with T. gondii is a critical factor for sepsis severity that needs to be considered when designing strategies to prevent and control the outcome of this devastating disease.


Assuntos
Coinfecção/patologia , Sepse/complicações , Sepse/patologia , Toxoplasmose/complicações , Animais , Modelos Animais de Doenças , Interferon gama/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células Th1/imunologia , Células Th2/imunologia
4.
Front Physiol ; 6: 269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500555

RESUMO

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) ß subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

5.
Front Pharmacol ; 6: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784875

RESUMO

Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen receptors (GPER). GPER activation is associated with beneficial/protective effects in the vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated complications, we hypothesized that the beneficial effects mediated by vascular GPER activation, in response to aldosterone, are decreased in diabetes. Mesenteric resistance arteries from female, 14-16 weeks-old, control and diabetic (db/db) mice were used. Phenylephrine (PhE)-induced contractions were greater in arteries from db/db vs. control mice. Aldosterone (10 nM) increased maximal contractile responses to PhE in arteries from control mice, an effect elicited via activation of GPER. Although aldosterone did not increase PhE responses in arteries from db/db mice, blockade of GPER, and MR decreased PhE-induced contractile responses in db/db mesenteric arteries. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in arteries from both control and db/db mice via MR-dependent mechanisms. GPER antagonism further decreased ACh-induced relaxation in the control group, but did not affect ACh responses in the diabetic group. Aldosterone increased extracellular signal-regulated kinase 1/2 phosphorylation in arteries from control and db/db mice by a GPER-dependent mechanism. GPER, but not MR, gene, and protein expression, determined by RT-PCR and immunoblotting/immunofluorescence assays, respectively, were increased in arteries from db/db mice vs. control arteries. These findings indicate that aldosterone activates both vascular MR and GPER and that the beneficial effects of GPER activation are decreased in arteries from diabetic animals. Our results further elucidate the mechanisms by which aldosterone influences vascular function and contributes to vascular dysfunction in diabetes. Financial Support: FAPESP, CNPq, and CAPES, Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA