Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
FASEB J ; 36(9): e22511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998000

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder induced by mutations in the dystrophin gene, leading to a degeneration of muscle fibers, triggering retrograde immunomodulatory, and degenerative events in the central nervous system. Thus, neuroprotective drugs such as pregabalin (PGB) can improve motor function by modulating plasticity, together with anti-inflammatory effects. The present work aimed to study the effects of PGB on axonal regeneration after axotomy in dystrophic and non-dystrophic mice. For that, MDX and C57BL/10 mouse strains were subjected to peripheral nerve damage and were treated with PGB (30 mg/kg/day, i.p.) for 28 consecutive days. The treatment was carried out in mice as soon as they completed 5 weeks of life, 1 week before the lesion, corresponding to the peak period of muscle degeneration in the MDX strain. Six-week-old mice were submitted to unilateral sciatic nerve crush and were sacrificed in the 9th week of age. The ipsi and contralateral sciatic nerves were processed for immunohistochemistry and qRT-PCR, evaluating the expression of proteins and gene transcripts related to neuronal and Schwann cell activity. Cranial tibial muscles were dissected for evaluation of neuromuscular junctions using α-bungarotoxin, and the myelinated axons of the sciatic nerve were analyzed by morphometry. The recovery of motor function was monitored throughout the treatment through tests of forced locomotion (rotarod) and spontaneous walking track test (Catwalk system). The results show that treatment with PGB reduced the retrograde cyclic effects of muscle degeneration/regeneration on the nervous system. This fact was confirmed after peripheral nerve injury, showing better adaptation and response of neurons and glia for rapid axonal regeneration, with efficient muscle targeting and regain of function. No side effects of PGB treatment were observed, and the expression of pro-regenerative proteins in neurons and Schwann cells was upregulated. Morphometry of the axons was in line with the preservation of motor endplates, resulting in enhanced performance of dystrophic animals. Overall, the present data indicate that pregabalin is protective and enhances regeneration of the SNP during the development of DMD, improving motor function, which can, in turn, be translated to the clinic.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofina/genética , Distrofina/metabolismo , Marcha , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Regeneração Nervosa , Pregabalina/metabolismo
2.
Mol Cell Neurosci ; 114: 103632, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058345

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease linked to the X chromosome induced by mutations in the dystrophin gene. Neuroprotective drugs, such as pregabalin (PGB), can improve motor function through the modulation of excitatory synapses, together with anti-apoptotic and anti-inflammatory effects. The present work studied the effects of PGB in the preservation of dystrophic peripheral nerves, allowing motor improvements in MDX mice. Five weeks old MDX and C57BL/10 mice were treated with PGB (30 mg/kg/day, i.p.) or vehicle, for 28 consecutive days. The mice were sacrificed on the 9th week, the sciatic nerves were dissected out and processed for immunohistochemistry and qRT-PCR, for evaluating the expression of proteins and gene transcripts related to neuronal activity and Schwann cell function. The lumbar spinal cords were also processed for qRT-PCR to evaluate the expression of neurotrophic factors and pro- and anti-inflammatory cytokines. Cranial tibial muscles were dissected out for endplate evaluation with α-bungarotoxin. The recovery of motor function was monitored throughout the treatment, using a spontaneous walking track test (Catwalk system) and a forced locomotion test (Rotarod). The results showed that treatment with PGB reduced the retrograde effects of muscle degeneration/regeneration on the nervous system from the 5th to the 9th week in MDX mice. Thus, PGB induced protein expression in neurons and Schwann cells, protecting myelinated fibers. In turn, better axonal morphology and close-to-normal motor endplates were observed. Indeed, such effects resulted in improved motor coordination of dystrophic animals. We believe that treatment with PGB improved the balance between excitatory and inhibitory inputs to spinal motoneurons, increasing motor control. In addition, PGB enhanced peripheral nerve homeostasis, by positively affecting Schwann cells. In general, the present results indicate that pregabalin is effective in protecting the PNS during the development of DMD, improving motor coordination, indicating possible translation to the clinic.


Assuntos
Marcha/efeitos dos fármacos , Distrofia Muscular de Duchenne/fisiopatologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pregabalina/farmacologia , Nervo Isquiático/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Pregabalina/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/fisiopatologia
3.
J Environ Manage ; 286: 112114, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33618323

RESUMO

The biological treatment of mine drainage (MD) using sulfate-reducing bacteria (SRB) is a technology in growing exploitation. The use of by-products as sources of electrons can make this treatment more environmentally and economically advantageous. However, the high chemical oxygen demand (COD) and the presence of recalcitrant molecules can lead to the accumulation of metabolic intermediates that acidify the system, thus interrupting the treatment. Besides, the adaptation of the inoculum to the establishment of sulfidogenesis with MD and by-product may be slow. This study aimed to investigate prompt adaptation and operation strategies that do not require additives to enable the sulfidogenic process to occur while maintaining a pH close to neutrality. The sources of electrons tested were trub (brewery residue) and crude glycerol - CG (residue from the biodiesel production). The inoculum from a methanogenic reactor was stored with a real MD for a month. The adapted inoculum was applied in a batch reactor for 168 h of hydraulic detention time, and promoted 75.8 ± 4.3% of sulfate removal from an MD with 3756.4 ± 258 mg.L-1 of sulfate using CG in a COD/SO42- ratio of 3 ratio. With higher initial substrate concentrations, acidification occurred and the treatment was interrupted. Using trub instead of CG, the acidification occurred at a COD/SO42- ratio of 3. Acidification was prevented and the best efficiencies in sulfate removal were obtained when the amount of substrate corresponding to COD/SO42- ratio of 3 was fractioned into equal parts and added over six days in the CG reactor. It was achieved 94.15 ± 1.76% of sulfate removal. With trub, the same procedure in which this COD was divided into seven parts, and resulted in a sulfate removal of 88.49 ± 1.02%. The removal of metals and metalloids were greater than 94.5% in all the systems in which the substrate supply was made fractionally, and the effluent generated presented alkalinity between 3370 and 4242 mg CaCO3.L-1, and pH between 6.8 and 7. The method of adaptation and operation applied allowed the realization of a MD treatment with quick establishment of sulfidogenesis and without the use of neutralizing additives. Finally, the effluent presented characteristics considered favorable for a later stage of post-treatment of the effluent with methane generation.


Assuntos
Reatores Biológicos , Sulfatos , Análise da Demanda Biológica de Oxigênio , Metais , Metano , Eliminação de Resíduos Líquidos
4.
Water Sci Technol ; 76(7-8): 1666-1675, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991783

RESUMO

Despite the fact that several authors consider the available measurement methods of hydraulic conductivity (ks) suitable for a good representation of the bed condition and clogging potential in horizontal subsurface flow constructed wetlands, others have questioned their adequacy. In this work, hydraulic conductivity measurements with conventional and modified methods were undertaken in two small full-scale units, one planted with cattail (Typha latifolia) and the other unplanted. Both units had already been operating for seven years and showed a high degree of clogging. It was observed that the use of the falling head method, with the introduction of the tubes during the test, provided results without a clear spatial trend. On the other hand, tests done on monitoring wells inserted during construction time showed, as expected, ks increasing with the horizontal distance from the inlet, but without reflecting actual field conditions. It was observed that, as the bed became more clogged, the use of the reported methods became more complex, suggesting the need of other methodologies. The use of planted fixed reactors (removable baskets installed in the bed) with evaluation of ks at constant head in the laboratory showed potential for the characterization of the hydrodynamic properties of the porous medium.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Reatores Biológicos , Porosidade , Typhaceae , Movimentos da Água , Purificação da Água
5.
Lasers Med Sci ; 29(2): 805-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23982719

RESUMO

In the last decades, the tendon injuries have increased substantially. Previous results suggested that low-level laser treatment (LLLT) promotes synthesis of extracellular matrix and improves the functional properties of the tendon. The aim of this study was to evaluate the effects of different protocols of LLLT on partially tenotomized tendons. Adult male rats were divided into the following: G1-intact, G2-injured, G3-injured + LLLT (4 J/cm(2) continuous), G4-injured + LLLT (4 J/cm(2) at 20 Hz). G2, G3, and G4 were euthanized 8 days after injury. G5-injured, G6-injured + LLLT (4 J/cm(2) continuous), and G7-injured + LLL (4 J/cm(2) at 20 Hz until the seventh day and 2 kHz from 8 to 14 days). G5, G6, and G7 were euthanized on the 15th day. Glycosaminoglycan (GAG) level was quantified by dimethylmethylene blue method and analyzed on agarose gel. Toluidine blue (TB) stain was used to observe metachromasy. CatWalk system was used to evaluate gait recovery. Collagen organization was analyzed by polarization microscopy. The GAG level increased in all transected groups, except G5. In G6 and G7, there was a significant increase in GAG in relation to G5. In G3 and G4, the presence of dermatan sulfate band was more prominent than G2. TB stains showed intense metachromasy in the treated groups. Birefringence analysis showed improvement in collagen organization in G7. The gait was significantly improved in G7. In conclusion, pulsed LLLT leads to increased organization of collagen bundles and improved gait recovery.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Traumatismos dos Tendões/radioterapia , Tendão do Calcâneo/lesões , Animais , Glicosaminoglicanos/metabolismo , Lasers , Terapia com Luz de Baixa Intensidade/instrumentação , Masculino , Microscopia de Polarização , Ratos Wistar , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/fisiopatologia , Cicatrização/efeitos da radiação
6.
Waste Manag ; 137: 253-263, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808434

RESUMO

Unmanned Aerial Vehicles (UAVs) for photogrammetry operations configures a technology capable of extracting quantitative information from land surface in a fast, accurate and safe way, reproducing it in high-resolution Digital Elevation Models (DEMs) and orthomosaics. Due to the operational efficiency of this technique, there is an interest in evaluating its quality compared to other methodologies traditionally used for monitoring procedures in infrastructure earthwork. In sanitary landfills, operational monitoring is directly linked to topographic services, as these are the main source of data for the geometric assessment of the work. In this context, the aim of the study was to verify accuracy and application range of UAV photogrammetry for geometrical and volumetric measurements, when compared to usual conventional survey procedures using total station, and how it can aggregate reliable data to landfills monitoring activities. UAV flights were carried on monthly basis, over a year. For accuracy analysis, the maximum RMSE error observed was 7.1 cm for horizontal axis and 0.37 cm for vertical axis for the monitoring period. Volumetric measurements were tested using Ground Control Point (GCPs) configurations distributed first at the landfill perimeter, which resulted in an average difference of 9% from that calculated by conventional topography, and measurements where GCPs were placed also in the landfill operation fronts, when a 4% average difference diverging from conventional topography was obtained. The conclusion shows that such monitoring routines, when performed periodically, provides a robust database with a high level of operational performance, covering effective information for preventive and corrective monitoring in landfill projects.


Assuntos
Dispositivos Aéreos não Tripulados , Instalações de Eliminação de Resíduos , Coleta de Dados
7.
Front Pharmacol ; 13: 1098374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686704

RESUMO

Introduction: Oral cancer refers to malignant tumors, of which 90% are squamous cell carcinomas (OSCCs). These malignancies exhibit rapid progression, poor prognosis, and often mutilating therapeutical approaches. The determination of a prophylactic and/or therapeutic antitumor role of the polyphenolic extract Polypodium leucotomos(PL) would be relevant in developing new tools for prevention and treatment. Methods: We aimed to determine the antitumor effect of PL by treating OSCC cell lines with PL metabolites and evaluating its action during OSCC progression in vivo. Results: PL treatment successfully impaired cell cycling and proliferation, migration, and invasion, enhanced apoptosis, and modulated macrophage polarization associated with the tumoral immune-inflammatory response of tongue cancer cell lines (TSCC). PL treatment significantly decreased the expression of MMP1 (p < 0.01) and MMP2 (p < 0.001), and increased the expression of TIMP1 (p < 0.001) and TIMP2 (p < 0.0001) in these cells. The mesenchymal-epithelial transition phenotype was promoted in cells treated with PL, through upregulation of E-CAD (p < 0.001) and reduction of N-CAD (p < 0.05). PL restrained OSCC progression in vivo by inhibiting tumor volume growth and decreasing the number of severe dysplasia lesions and squamous cell carcinomas. Ki-67 was significantly higher expressed in tongue tissues of animals not treated with PL(p < 0.05), and a notable reduction in Bcl2 (p < 0.05) and Pcna (p < 0.05) cell proliferation-associated genes was found in dysplastic lesions and TSCCs of PL-treated mice. Finally, N-cad(Cdh2), Vim, and Twist were significantly reduced in tongue tissues treated with PL. Conclusion: PL significantly decreased OSCC carcinogenic processes in vitro and inhibited tumor progression in vivo. PL also appears to contribute to the modulation of immune-inflammatory oral tumor-associated responses. Taken together, these results suggest that PL plays an important antitumor role in processes associated with oral carcinogenesis and may be a potential phytotherapeutic target for the prevention and/or adjuvant treatment of TSCCs.

8.
Brain Res Bull ; 174: 53-62, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090933

RESUMO

Surgical intervention is necessary following nerve trauma. Tubular prostheses can guide growing axons and inserting substances within these prostheses can be positive for the regeneration, making it an alternative for the current standard tools for nerve repair. Our aim was to investigate the effects of fibrin glue BthTL when combined with a synthetic TNF mimetic-action peptide on nerve regeneration. Male Wistar rats suffered left sciatic nerve transection. For repairing, we used empty silicon tubes (n = 10), tubes filled with fibrin glue BthTL (Tube + Glue group, n = 10) or tubes filled with fibrin glue BThTL mixed with TNF mimetic peptide (Tube + Glue + Pep group, n = 10). Animals were euthanized after 45 days. We collected nerves to perform immunostaining (neurofilament, GAP43, S100-ß, NGFRp75 and Iba-1), light and transmission electron microscopy (for counting myelinated, unmyelinated and degenerated fibers; and for the evaluation of morphometric aspects of regenerated fibers) and collagen staining. All procedures were approved by local ethics committee (protocol 063/17). Tube + Glue + Pep group showed intense inflammatory infiltrate, higher Iba-1 expression, increased immunostaining for NGFRp75 receptor (which characterizes Schwann cell regenerative phenotype), higher myelin thickness and fiber diameter and more type III collagen deposition. Tube + Glue group showed intermediate results between empty tube and Tube + Glue + Pep groups for anti-NGFRp75 immunostaining, inflammation and collagen; on fiber counts, this group showed more degenerate fibers and fewer unmyelinated axons than others. Empty tube group showed superiority only in GAP43 immunostaining. A combination of BthTL glue and TNF mimetic peptide induced greater axonal regrowth and remyelination.


Assuntos
Adesivo Tecidual de Fibrina , Regeneração Nervosa/efeitos dos fármacos , Peptidomiméticos/administração & dosagem , Peptidomiméticos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia , Animais , Axônios/efeitos dos fármacos , Colágeno/metabolismo , Imuno-Histoquímica , Masculino , Bainha de Mielina/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Peptidomiméticos/química , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/lesões , Fator de Necrose Tumoral alfa/química
9.
Cells ; 7(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200326

RESUMO

Tendon injuries represent a clinical challenge in regenerative medicine because their natural repair process is complex and inefficient. The high incidence of tendon injuries is frequently associated with sports practice, aging, tendinopathies, hypertension, diabetes mellitus, and the use of corticosteroids. The growing interest of scientists in using adipose-derived mesenchymal stem cells (ADMSC) in repair processes seems to be mostly due to their paracrine and immunomodulatory effects in stimulating specific cellular events. ADMSC activity can be influenced by GDF-5, which has been successfully used to drive tenogenic differentiation of ADMSC in vitro. Thus, we hypothesized that the application of ADMSC in isolation or in association with GDF-5 could improve Achilles tendon repair through the regulation of important remodeling genes expression. Lewis rats had tendons distributed in four groups: Transected (T), transected and treated with ADMSC (ASC) or GDF-5 (GDF5), or with both (ASC+GDF5). In the characterization of cells before application, ADMSC expressed the positive surface markers, CD90 (90%) and CD105 (95%), and the negative marker, CD45 (7%). ADMSC were also differentiated in chondrocytes, osteoblast, and adipocytes. On the 14th day after the tendon injury, GFP-ADMSC were observed in the transected region of tendons in the ASC and ASC+GDF5 groups, and exhibited and/or stimulated a similar genes expression profile when compared to the in vitro assay. ADMSC up-regulated Lox, Dcn, and Tgfb1 genes expression in comparison to T and ASC+GDF5 groups, which contributed to a lower proteoglycans arrangement, and to a higher collagen fiber organization and tendon biomechanics in the ASC group. The application of ADMSC in association with GDF-5 down-regulated Dcn, Gdf5, Lox, Tgfb1, Mmp2, and Timp2 genes expression, which contributed to a lower hydroxyproline concentration, lower collagen fiber organization, and to an improvement of the rats' gait 24 h after the injury. In conclusion, although the literature describes the benefic effect of GDF-5 for the tendon healing process, our results show that its application, isolated or associated with ADMSC, cannot improve the repair process of partial transected tendons, indicating the higher effectiveness of the application of ADMSC in injured Achilles tendons. Our results show that the application of ADMSC in injured Achilles tendons was more effective in relation to its association with GDF-5.

10.
Neurosci Lett ; 647: 97-103, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28341478

RESUMO

MHC-I molecules are involved in the antigenic presentation of cytosol-derived peptides to CD8T lymphocytes. In the nervous system, MHC-I expression is low to absent, occurring only during certain phases of development and aging or after injuries. The involvement of MHC-I in synaptic plasticity has been reported and, following lesion, astrocytes become reactive, limiting tissue damage. Such cells also attempt to restore homeostasis by secreting cytokines and neurotrophic factors. Moreover, astrocytes modulate synapse function, by taking up and releasing neurotransmitters and by limiting the synaptic cleft. Thus, the aim of the present study was to evaluate if astrocyte activation and reactivity are related to MHC I expression and if astrogliosis can be downregulated by silencing MHC-I mRNA synthesis. Given that, we evaluated astrocyte reactivity and synaptogenesis in co-cultures of astrocytes and spinal neurons under MHC-I RNA interference. For that, the MHC-I ß2-microglobulin subunit (ß2m) was knocked-down by siRNA in co-cultures (ß2m expression <60%, p<0.001). As measured by qRT-PCR, silencing of ß2m decreased expression of the astrocytic marker GFAP (<60%, p<0.001), as well as neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-17). No significant changes in synaptic stability indicate that neuron-neuron interaction was preserved after ß2m silencing. Overall, the present data reinforce the importance of MHC-I expression for generation of astrogliosis, what may, in turn, become a target for future CNS/PNS therapies following injury.


Assuntos
Astrócitos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gliose , Antígenos de Histocompatibilidade Classe I/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapses/fisiologia , Microglobulina beta-2/genética
11.
Stem Cell Res Ther ; 5(3): 78, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916098

RESUMO

INTRODUCTION: The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. METHODS: The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. RESULTS: The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. CONCLUSIONS: The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need.


Assuntos
Adesivo Tecidual de Fibrina , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Citometria de Fluxo , Ratos , Ratos Wistar , Venenos de Serpentes
12.
PLoS One ; 9(9): e107292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211468

RESUMO

Severe accidents caused by the "armed" spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.


Assuntos
Venenos de Aranha/toxicidade , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Conexina 43/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos Wistar , Aranhas
13.
Waste Manag ; 33(2): 420-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23177019

RESUMO

Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models.


Assuntos
Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Eliminação de Resíduos , Brasil , Simulação por Computador , Modelos Teóricos , Reologia , Fatores de Tempo
14.
PLoS One ; 7(8): e42803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912741

RESUMO

BACKGROUND: G-CSF has been shown to increase neuronal survival, which may positively influence the spinal cord microenvironment during the course of muscular dystrophies. METHODOLOGY/PRINCIPAL FINDINGS: Male MDX mice that were six weeks of age received a left sciatic nerve transection and were treated with intraperitoneal injections of 200 µg/kg/day of G-CSF 7 days before and 7 days after the transection. The axotomy was performed after the cycles of muscular degeneration/regeneration, consistent with previous descriptions of this model of muscular dystrophy. C57BL/10 mice were used as control subjects. Seven days after the surgery, the animals were sacrificed and their lumbar spinal cords were processed for immunohistochemistry (anti-MHC I, anti-Synaptophysin, anti-GFAP and anti-IBA-1) and transmission electron microscopy. MHC I expression increased in both strains of mice after the axotomy. Nevertheless, the MDX mice displayed a significantly smaller MHC I upregulation than the control mice. Regarding GFAP expression, the MDX mice showed a stronger astrogliosis compared with the C57BL/10 mice across all groups. Both groups that were treated with G-CSF demonstrated preservation of synaptophysin expression compared with the untreated and placebo groups. The quantitative analysis of the ultrastructural level showed a preservation of the synaptic covering for the both groups that were treated with G-CSF and the axotomized groups showed a smaller loss of synaptic contact in relation to the treated groups after the lesion. CONCLUSIONS/SIGNIFICANCE: The reduction of active inputs to the alpha-motoneurons and increased astrogliosis in the axotomized and control groups may be associated with the cycles of muscle degeneration/regeneration that occur postnatally. The G-CSF treated group showed a preservation of the spinal cord microenvironment after the lesion. Moreover, the increase of MHC I expression in the MDX mice that were treated with G-CSF may indicate that this drug performs an active role in regenerative potential after lesions.


Assuntos
Fator Estimulador de Colônias de Granulócitos/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Axotomia/efeitos adversos , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Antígenos de Histocompatibilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/diagnóstico por imagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismos dos Nervos Periféricos/etiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ultrassonografia
15.
Coluna/Columna ; 9(2): 193-198, abr.-jun. 2010. ilus
Artigo em Português | LILACS | ID: lil-557028

RESUMO

Foi demonstrado recentemente que o complexo de histocompatibilidade principal de classe I (MHC I), expresso no sistema nervoso central (SNC), não funciona somente como molécula com papel imunológico, mas também como parte de um mecanismo envolvido na plasticidade sináptica. A expressão de MHC I interfere na intensidade e seletividade da retração de sinapses em contato com neurônios que sofreram lesão e também influencia a reatividade das células gliais próximas a esses neurônios. A intensidade do rearranjo sináptico e resposta glial após lesão, ligadas à expressão de MHC I no SNC, repercute em diferenças na capacidade regenerativa e recuperação funcional em linhagens de camundongos isogênicos. Dessa forma, os novos aspectos sobre a função do MHC I no SNC direcionam futuras pesquisas no sentido de buscar o envolvimento do MHC I em doenças neurológicas e também o desenvolvimento de novas estratégias terapêuticas.


It has been recently demonstrated that the major histocompatibility complex of class I (MHC I) expressed in the central nervous system (CNS) does not only function as a molecule of the immune system, but also plays a role in the synaptic plasticity. The expression of MHC I influences the intensity and selectivity of elimination of synapses apposed to neurons that were subjected to lesion, besides influencing the reactivity of neighboring glial cells. MHC I expression and the degree of synaptic rearrangement and glial response after injury correlate with differences in the regenerative potential and functional recovery of isogenic mice strains. In this way, the new aspects regarding MHC I functions in the CNS may guide further studies aiming at searching the involvement of MCH I in neurologic disorders, as well as the development of new therapeutic strategies.


El complejo mayor de histocompatibilidad de clase I (MHC I), expresado en el sistema nervioso central (SNC), no sólo funciona como una molécula con función inmunológica, sino que es crucial para las respuestas del tejido nervioso en casos de lesiones. El MHC I está involucrado con los procesos de plasticidad sináptica y las células gliales en el microambiente de la médula espinal después de realizada axotomía periférica. La expresión de MHC I interfiere con la intensidad y la forma en que se producen la contracción y la eliminación de sinapsis con relación a las neuronas, cuyos axones se han comprometido, y también influye en la reactividad de las células gliales, cerca de estas neuronas. La intensidad de estos cambios, que responden a la expresión de MHC I en el SNC, implica diferencias en la capacidad de regeneración axonal de las células dañadas por axotomía, por lo que el nivel de expresión de las moléculas MHC I se relaciona con el proceso de regeneración de los axones y, en consecuencia, con la recuperación funcional. Por consiguiente, estos nuevos aspectos sobre la función del MHC I en el SNC orientan nuevas investigaciones con miras a entender el papel del MHC I en las enfermedades neurológicas y a desarrollar nuevas estrategias terapéuticas.


Assuntos
Axônios , Axotomia , Complexo Principal de Histocompatibilidade , Plasticidade Neuronal , Medula Espinal , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA