Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(3): 1023-1037, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426622

RESUMO

Uranium is widely spread in the environment due to its natural and anthropogenic occurrences, hence the importance of understanding its impact on human health. The skeleton is the main site of long-term accumulation of this actinide. However, interactions of this metal with biological processes involving the mineralized extracellular matrix and bone cells are still poorly understood. To get a better insight into these interactions, we developed new biomimetic bone matrices containing low doses of natural uranium (up to 0.85 µg of uranium per cm2). These models were characterized by spectroscopic and microscopic approaches before being used as a support for the culture and differentiation of pre-osteoclastic cells. In doing so, we demonstrate that uranium can exert opposite effects on osteoclast resorption depending on its concentration in the bone microenvironment. Our results also provide evidence for the first time that resorption contributes to the remobilization of bone matrix-bound uranium. In agreement with this, we identified, by HRTEM, uranium phosphate internalized in vesicles of resorbing osteoclasts. Thanks to the biomimetic matrices we developed, this study highlights the complex mutual effects between osteoclasts and uranium. This demonstrates the relevance of these 3D models to further study the cellular mechanisms at play in response to uranium storage in bone tissue, and thus better understand the impact of environmental exposure to uranium on human bone health.


Assuntos
Matriz Óssea/efeitos dos fármacos , Modelos Biológicos , Osteoclastos/efeitos dos fármacos , Urânio/metabolismo , Animais , Biomimética , Matriz Óssea/metabolismo , Reabsorção Óssea/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7 , Distribuição Tecidual , Urânio/administração & dosagem
2.
Sci Rep ; 13(1): 4111, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914734

RESUMO

During nuclear fuel processing, workers can potentially be exposed to repeated inhalations of uranium compounds. Uranium nephrotoxicity is well documented after acute uranium intake, but it is controversial after long-term or protracted exposure. This study aims to analyze the nephrotoxicity threshold after repeated uranium exposure through upper airways and to investigate the resulting uranium biokinetics in comparison to reference models. Mice (C57BL/6J) were exposed to uranyl nitrate (0.03-3 mg/kg/day) via intranasal instillation four times a week for two weeks. Concentrations of uranium in urines and tissues were measured at regular time points (from day 1 to 91 post-exposure). At each exposure level, the amount of uranium retained in organs/tissues (kidney, lung, bone, nasal compartment, carcass) and excreta (urine, feces) reflected the two consecutive weeks of instillation except for renal uranium retention for the highest uranium dose. Nephrotoxicity biomarkers, KIM-1, clusterin and osteopontin, are induced from day 4 to day 21 and associated with changes in renal function (arterial fluxes) measured using non-invasive functional imaging (Doppler-ultrasonography) and confirmed by renal histopathological analysis. These results suggest that specific biokinetic models should be developed to consider altered uranium excretion and retention in kidney due to nephrotoxicity. The threshold is between 0.25 and 1 mg/kg/day after repeated exposure to uranium via upper airways.


Assuntos
Líquidos Corporais , Urânio , Camundongos , Animais , Urânio/toxicidade , Camundongos Endogâmicos C57BL , Rim/patologia , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA