Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Rev Mol Cell Biol ; 24(2): 123-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36104626

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.


Assuntos
Proteínas Argonautas , RNA de Interação com Piwi , Animais , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
PLoS Genet ; 18(1): e1010015, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025870

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


Assuntos
Atrofia Muscular/patologia , Distrofia Muscular Oculofaríngea/patologia , Proteína I de Ligação a Poli(A)/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Regulação da Expressão Gênica , Testes Genéticos , Humanos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutação , Proteína I de Ligação a Poli(A)/química , Estudo de Prova de Conceito , Agregados Proteicos/efeitos dos fármacos
4.
Trends Genet ; 37(2): 188-200, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32951946

RESUMO

Piwi-interacting RNAs (piRNAs) and PIWI proteins play key functions in a wide range of biological and developmental processes through the regulation of cellular mRNAs, in addition to their role in transposable element (TE) repression. Evolutionary studies indicate that these PIWI functions in mRNA regulatory programs, occurring in both germ and somatic cells, are ancestral. Recent advances have widely expanded our understanding of these functions of PIWI proteins, identifying new mechanisms of action and strengthening their importance through their conservation in distant species. In this review, we discuss the latest findings regarding piRNA/PIWI-dependent mRNA decay in germ cells and during the maternal-to-zygotic transition in embryos combined with new modes of action of PIWI proteins in mRNA stabilization and translational activation and piRNA-independent roles of PIWI proteins in cancer.


Assuntos
Proteínas Argonautas/genética , Redes Reguladoras de Genes/genética , RNA Interferente Pequeno/genética , Animais , Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , Humanos , Estabilidade de RNA/genética , RNA Mensageiro/genética , Ativação Transcricional/genética
5.
Hum Mol Genet ; 28(10): 1694-1708, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649389

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.


Assuntos
Guanabenzo/farmacologia , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Proteína I de Ligação a Poli(A)/genética , Proteína 1 de Ligação a X-Box/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Dobramento de Proteína , Resposta a Proteínas não Dobradas/efeitos dos fármacos
6.
EMBO J ; 36(21): 3194-3211, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030484

RESUMO

PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila, Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self-renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self-renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self-renewal and acts through direct mRNA regulation. We identify the Cbl proto-oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self-renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4-NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post-transcriptional regulators in key developmental decisions.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Germinativas/metabolismo , Fatores de Iniciação de Peptídeos/genética , Proteínas Proto-Oncogênicas c-cbl/genética , RNA Interferente Pequeno/genética , Células-Tronco/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Fatores de Iniciação de Peptídeos/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Ribonucleases/genética , Ribonucleases/metabolismo , Células-Tronco/citologia
7.
Development ; 145(17)2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194260

RESUMO

PIWI proteins and Piwi-interacting RNAs (piRNAs) have established and conserved roles in repressing transposable elements (TEs) in the germline of animals. However, in several biological contexts, a large proportion of piRNAs are not related to TE sequences and, accordingly, functions for piRNAs and PIWI proteins that are independent of TE regulation have been identified. This aspect of piRNA biology is expanding rapidly. Indeed, recent reports have revealed the role of piRNAs in the regulation of endogenous gene expression programs in germ cells, as well as in somatic tissues, challenging dogma in the piRNA field. In this Review, we focus on recent data addressing the biological and developmental functions of piRNAs, highlighting their roles in embryonic patterning, germ cell specification, stem cell biology, neuronal activity and metabolism.


Assuntos
Proteínas Argonautas/genética , Caenorhabditis elegans/embriologia , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , RNA Interferente Pequeno/genética , Células-Tronco/metabolismo , Animais , Padronização Corporal/genética , Elementos de DNA Transponíveis/genética , Camundongos , RNA Mensageiro/genética , Espermatogênese/genética
8.
RNA ; 24(4): 529-539, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317541

RESUMO

Cytoplasmic polyadenylation is a widespread mechanism to regulate mRNA translation. In vertebrates, this process requires two sequence elements in target 3' UTRs: the U-rich cytoplasmic polyadenylation element and the AAUAAA hexanucleotide. In Drosophila melanogaster, cytoplasmic polyadenylation of Toll mRNA occurs independently of these canonical elements and requires a machinery that remains to be characterized. Here we identify Dicer-2 as a component of this machinery. Dicer-2, a factor previously involved in RNA interference (RNAi), interacts with the cytoplasmic poly(A) polymerase Wispy. Depletion of Dicer-2 from polyadenylation-competent embryo extracts and analysis of wispy mutants indicate that both factors are necessary for polyadenylation and translation of Toll mRNA. We further identify r2d2 mRNA, encoding a Dicer-2 partner in RNAi, as a Dicer-2 polyadenylation target. Our results uncover a novel function of Dicer-2 in activation of mRNA translation through cytoplasmic polyadenylation.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Poliadenilação/fisiologia , Polinucleotídeo Adenililtransferase/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/química , Ribonuclease III/metabolismo , Receptores Toll-Like/química , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Polinucleotídeo Adenililtransferase/genética , Biossíntese de Proteínas/genética , Sinais de Poliadenilação na Ponta 3' do RNA/genética , RNA Helicases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
9.
RNA ; 23(10): 1552-1568, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28701521

RESUMO

Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Animais , RNA Helicases DEAD-box/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Regulação da Expressão Gênica , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , RNA Helicases/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteínas/genética
10.
PLoS Genet ; 11(3): e1005092, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816335

RESUMO

Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction.


Assuntos
Proteínas Mitocondriais/genética , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/genética , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Mitocondriais/biossíntese , Músculo Esquelético/patologia , Distrofia Muscular Oculofaríngea/patologia , Proteína I de Ligação a Poli(A)/biossíntese , Poliadenilação/genética , RNA Mensageiro/biossíntese
11.
Nature ; 467(7319): 1128-32, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20953170

RESUMO

Piwi-associated RNAs (piRNAs), a specific class of 24- to 30-nucleotide-long RNAs produced by the Piwi-type of Argonaute proteins, have a specific germline function in repressing transposable elements. This repression is thought to involve heterochromatin formation and transcriptional and post-transcriptional silencing. The piRNA pathway has other essential functions in germline stem cell maintenance and in maintaining germline DNA integrity. Here we uncover an unexpected function of the piRNA pathway in the decay of maternal messenger RNAs and in translational repression in the early embryo. A subset of maternal mRNAs is degraded in the embryo at the maternal-to-zygotic transition. In Drosophila, maternal mRNA degradation depends on the RNA-binding protein Smaug and the deadenylase CCR4, as well as the zygotic expression of a microRNA cluster. Using mRNA encoding the embryonic posterior morphogen Nanos (Nos) as a paradigm to study maternal mRNA decay, we found that CCR4-mediated deadenylation of nos depends on components of the piRNA pathway including piRNAs complementary to a specific region in the nos 3' untranslated region. Reduced deadenylation when piRNA-induced regulation is impaired correlates with nos mRNA stabilization and translational derepression in the embryo, resulting in head development defects. Aubergine, one of the Argonaute proteins in the piRNA pathway, is present in a complex with Smaug, CCR4, nos mRNA and piRNAs that target the nos 3' untranslated region, in the bulk of the embryo. We propose that piRNAs and their associated proteins act together with Smaug to recruit the CCR4 deadenylation complex to specific mRNAs, thus promoting their decay. Because the piRNAs involved in this regulation are produced from transposable elements, this identifies a direct developmental function for transposable elements in the regulation of gene expression.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Poliadenilação/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Regiões 3' não Traduzidas/genética , Animais , Proteínas Argonautas , Citoplasma/genética , Citoplasma/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Mães , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Zigoto/metabolismo
12.
Biochim Biophys Acta ; 1829(6-7): 714-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298642

RESUMO

mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Desenvolvimento Embrionário/genética , MicroRNAs/genética , Estabilidade de RNA/genética , RNA Mensageiro Estocado/genética , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Humanos , Oogênese/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Nat Commun ; 15(1): 8020, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271704

RESUMO

Most RNA-protein condensates are composed of heterogeneous immiscible phases. However, how this multiphase organization contributes to their biological functions remains largely unexplored. Drosophila germ granules, a class of RNA-protein condensates, are the site of mRNA storage and translational activation. Here, using super-resolution microscopy and single-molecule imaging approaches, we show that germ granules have a biphasic organization and that translation occurs in the outer phase and at the surface of the granules. The localization, directionality, and compaction of mRNAs within the granule depend on their translation status, translated mRNAs being enriched in the outer phase with their 5'end oriented towards the surface. Translation is strongly reduced when germ granule biphasic organization is lost. These findings reveal the intimate links between the architecture of RNA-protein condensates and the organization of their different functions, highlighting the functional compartmentalization of these condensates.


Assuntos
Grânulos Citoplasmáticos , Proteínas de Drosophila , Drosophila melanogaster , Biossíntese de Proteínas , RNA Mensageiro , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Drosophila/metabolismo , Drosophila/genética , Condensados Biomoleculares/metabolismo
14.
Nat Commun ; 15(1): 8405, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333531

RESUMO

Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Glicólise , Fatores de Iniciação de Peptídeos , RNA Interferente Pequeno , Animais , Glicólise/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Diferenciação Celular , Reprogramação Celular/genética , Regiões 5' não Traduzidas , Células-Tronco de Oogônios/metabolismo , Células-Tronco de Oogônios/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Reprogramação Metabólica , RNA de Interação com Piwi
15.
Drug Discov Today Technol ; 10(1): e103-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050237

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease which affects specific muscles. No pharmacological treatments are currently available for OPMD. In recent years, genetically tractable models of OPMD ­ Drosophila and Caenorhabditis elegans ­ have been generated. Although these models have not yet been used for large-scale primary drug screening, they have been very useful in candidate approaches for the identification of potential therapeutic compounds for OPMD. In this brief review, we summarize the data that validated active molecules for OPMD in animal models including Drosophila, C. elegans and mouse.


Assuntos
Modelos Animais de Doenças , Descoberta de Drogas , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Animais , Humanos
16.
Open Biol ; 13(4): 230008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042114

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease characterized by the progressive degeneration of specific muscles. OPMD is due to a mutation in the gene encoding poly(A) binding protein nuclear 1 (PABPN1) leading to a stretch of 11 to 18 alanines at N-terminus of the protein, instead of 10 alanines in the normal protein. This alanine tract extension induces the misfolding and aggregation of PABPN1 in muscle nuclei. Here, using Drosophila OPMD models, we show that the unfolded protein response (UPR) is activated in OPMD upon endoplasmic reticulum stress. Mutations in components of the PERK branch of the UPR reduce muscle degeneration and PABPN1 aggregation characteristic of the disease. We show that oral treatment of OPMD flies with Icerguastat (previously IFB-088), a Guanabenz acetate derivative that shows lower side effects, also decreases muscle degeneration and PABPN1 aggregation. Furthermore, the positive effect of Icerguastat depends on GADD34, a key component of the phosphatase complex in the PERK branch of the UPR. This study reveals a major contribution of the ER stress in OPMD pathogenesis and provides a proof-of-concept for Icerguastat interest in future pharmacological treatments of OPMD.


Assuntos
Distrofia Muscular Oculofaríngea , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Músculo Esquelético/metabolismo , Resposta a Proteínas não Dobradas , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático , Drosophila
17.
Dev Cell ; 13(5): 691-704, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981137

RESUMO

Bicaudal-C (Bic-C) encodes an RNA-binding protein required maternally for patterning the Drosophila embryo. We identified a set of mRNAs that associate with Bic-C in ovarian ribonucleoprotein complexes. These mRNAs are enriched for mRNAs that function in oogenesis and in cytoskeletal regulation, and include Bic-C RNA itself. Bic-C binds specific segments of the Bic-C 5' untranslated region and negatively regulates its own expression by binding directly to NOT3/5, a component of the CCR4 core deadenylase complex, thereby promoting deadenylation. Bic-C overexpression induces premature cytoplasmic-streaming, a posterior-group phenotype, defects in Oskar and Kinesin heavy chain:betaGal localization as well as dorsal-appendage defects. These phenotypes are largely reciprocal to those of Bic-C mutants, and they affect cellular processes that Bic-C-associated mRNAs are known, or predicted, to regulate. We conclude that Bic-C regulates expression of specific germline mRNAs by controlling their poly(A)-tail length.


Assuntos
Citoesqueleto/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , RNA Mensageiro/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ribonucleases/fisiologia , Regiões 5' não Traduzidas , Animais , Transporte Biológico Ativo , Padronização Corporal , Citoplasma/metabolismo , Drosophila/embriologia , Proteínas de Drosophila/genética , Feminino , Mutação , Oogênese , Poli A/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleases/genética
18.
RNA ; 16(7): 1356-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20504953

RESUMO

The CCR4-NOT complex is the main enzyme catalyzing the deadenylation of mRNA. We have investigated the composition of this complex in Drosophila melanogaster by immunoprecipitation with a monoclonal antibody directed against NOT1. The CCR4, CAF1 (=POP2), NOT1, NOT2, NOT3, and CAF40 subunits were associated in a stable complex, but NOT4 was not. Factors known to be involved in mRNA regulation were prominent among the other proteins coprecipitated with the CCR4-NOT complex, as analyzed by mass spectrometry. The complex was localized mostly in the cytoplasm but did not appear to be a major component of P bodies. Of the known CCR4 paralogs, Nocturnin was found associated with the subunits of the CCR4-NOT complex, whereas Angel and 3635 were not. RNAi experiments in Schneider cells showed that CAF1, NOT1, NOT2, and NOT3 are required for bulk poly(A) shortening and hsp70 mRNA deadenylation, but knock-down of CCR4, CAF40, and NOT4 did not affect these processes. Overexpression of catalytically dead CAF1 had a dominant-negative effect on mRNA decay. In contrast, overexpression of inactive CCR4 had no effect. We conclude that CAF1 is the major catalytically important subunit of the CCR4-NOT complex in Drosophila Schneider cells. Nocturnin may also be involved in mRNA deadenylation, whereas there is no evidence for a similar role of Angel and 3635.


Assuntos
Drosophila melanogaster/enzimologia , Ribonucleases/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteoma/análise , RNA Mensageiro/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Ribonucleases/química
19.
Science ; 377(6607): 712-713, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951697
20.
Sci Rep ; 12(1): 9288, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35660762

RESUMO

Post-transcriptional regulatory mechanisms play a role in many biological contexts through the control of mRNA degradation, translation and localization. Here, we show that the RING finger protein RNF219 co-purifies with the CCR4-NOT complex, the major mRNA deadenylase in eukaryotes, which mediates translational repression in both a deadenylase activity-dependent and -independent manner. Strikingly, RNF219 both inhibits the deadenylase activity of CCR4-NOT and enhances its capacity to repress translation of a target mRNA. We propose that the interaction of RNF219 with the CCR4-NOT complex directs the translational repressive activity of CCR4-NOT to a deadenylation-independent mechanism.


Assuntos
Biossíntese de Proteínas , Ribonucleases , Regulação da Expressão Gênica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA