Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Sci ; 276: 1-13, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348307

RESUMO

Quercus ilex is a dominant tree species in the Mediterranean region with double economic and ecological importance and increasing use in reforestation. Seedling establishment is extremely vulnerable to environmental stresses, particularly drought. A time course study on physiological and proteomic response of holm oak to water limitation stress and recovery during early heterotrophic growth is reported. Applied stress led to diminution in plant water content and root growth, oxidative stress in roots and some alterations in the anti-oxidative protection. Plant parts differed substantially in soluble sugar and free phenolic content, and in their changes during stress and recovery. Proteomic response in holm oak roots and cotyledons was estimated using combined 1-DE/2-DE approach and protein identification by MALDI TOF-TOF PMF and MS/MS. A total of 127 differentially abundant protein species (DAPs) were identified. DAPs related to starch metabolism, lipid to sugar conversion, reserve proteins and their mobilization were typical for cotyledons. DAPs in roots were involved in sugar utilization, secondary metabolism and defense, including pathogenesis related proteins from PR-5 and PR-10 families. Results emphasize specific proteome signatures of separate plant parts as well as importance of sink-source interaction between root and cotyledon in the time course of stress and in recovery.


Assuntos
Cotilédone/fisiologia , Raízes de Plantas/fisiologia , Proteoma , Quercus/fisiologia , Desidratação , Secas , Especificidade de Órgãos , Proteômica , Plântula/fisiologia , Amido/metabolismo , Estresse Fisiológico , Árvores
2.
Front Plant Sci ; 6: 627, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322068

RESUMO

Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth, and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and separated by two-dimensional electrophoresis. Coomassie colloidal stained gel images were analyzed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defense against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defense system in roots to actively counteract drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA