Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; : e16357, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898619

RESUMO

PREMISE: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. METHODS: Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. RESULTS: Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. CONCLUSIONS: Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.

2.
Mol Genet Genomics ; 293(6): 1477-1491, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30069598

RESUMO

KEY MESSAGE: QTL mapping of important architectural traits was successfully applied to an A-genome diploid population using gene-specific variations. Peanut wild species are an important source of resistance to biotic and possibly abiotic stress; because these species differ from the cultigen in many traits, we have undertaken to identify QTLs for several plant architecture-related traits. In this study, we took recently identified SNPs, converted them into markers, and identified QTLs for architectural traits. SNPs from RNASeq data distinguishing two parents, A. duranensis (KSSc38901) and A. cardenasii (GKP10017), of a mapping population were identified using three references-A. duranensis V14167 genome sequence, and transcriptome sequences of A. duranensis KSSc38901 and OLin. More than 49,000 SNPs differentiated the parents, and 87.9% of the 190 SNP calls tested were validated. SNPs were then genotyped on 91 F2 lines using KASP chemistry on a Roche LightCycler 480 and a Fluidigm Biomark HD, and using SNPType chemistry on the Fluidigm Biomark HD. A linkage map was constructed having ten linkage groups, with 144 loci spanning a total map distance of 1040 cM. Comparison of the A-genome map to the A. duranensis genome sequence revealed a high degree of synteny. QTL analysis was also performed on the mapping population for important architectural traits. Fifteen definitive and 16 putative QTLs for petiole length, leaflet length and width, leaflet area, leaflet length/width ratio, main stem height, presence of flowers on the main stem, and seed mass were identified. Results demonstrate that SNPs identified from transcriptome sequencing could be converted to KASP or SNPType markers with a high success rate, and used to identify alleles with significant phenotypic effects, These could serve as information useful for introgression of alleles into cultivated peanut from wild species and have the potential to allow breeders to more easily fix these alleles using a marker-assisted backcrossing approach.


Assuntos
Arachis/anatomia & histologia , Arachis/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Arachis/classificação , Arachis/crescimento & desenvolvimento , Mapeamento Cromossômico , Domesticação , Evolução Molecular , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Especificidade da Espécie
3.
Mol Genet Genomics ; 290(3): 1169-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663138

RESUMO

Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.


Assuntos
Arachis/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma , Arachis/classificação , Sequência de Bases , Ligação Genética , Marcadores Genéticos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , Análise de Sequência de DNA , Sudoeste dos Estados Unidos , Tetraploidia
4.
Genet Mol Biol ; 38(3): 353-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500440

RESUMO

Peanut (Arachis hypogaea) is the fifth most produced oil crop worldwide. Besides lack of water, fungal diseases are the most limiting factors for the crop. Several species of Arachis are resistant to certain pests and diseases. This study aimed to successfully cross the A-genome with B-K-A genome wild species previously selected for fungal disease resistance, but that are still untested. We also aimed to polyplodize the amphihaploid chromosomes; cross the synthetic amphidiploids and A. hypogaea to introgress disease resistance genes into the cultivated peanut; and analyze pollen viability and morphological descriptors for all progenies and their parents. We selected 12 A-genome accessions as male parents and three B-genome species, one K-genome species, and one A-genome species as female parents. Of the 26 distinct cross combinations, 13 different interspecific AB-genome and three AA-genome hybrids were obtained. These sterile hybrids were polyploidized and five combinations produced tetraploid flowers. Next, 16 combinations were crossed between A. hypogaea and the synthetic amphidiploids, resulting in 11 different hybrid combinations. Our results confirm that it is possible to introgress resistance genes from wild species into the peanut using artificial hybridization, and that more species than previously reported can be used, thus enhancing the genetic variability in peanut genetic improvement programs.

5.
Plants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926071

RESUMO

Early and late leaf spot are two devastating diseases of peanut (Arachis hypogaea L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([A. batizocoi × (A. cardenasii × A. diogoi)]4x), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars. Twenty-seven interspecific lines selected from prior evaluation of an advanced backcross population were evaluated for resistance to early and late leaf spot, and for yield in two locations in Ghana in 2006 and 2007. Several interspecific lines had early leaf spot scores significantly lower than the susceptible parent, indicating that resistance to leaf spot had been successfully introgressed and retained after three cycles of backcrossing. Time to appearance of early leaf spot symptoms was less in the introgression lines than in susceptible check cultivars, but the opposite was true for late leaf spot. Selected lines from families 43-08, 43-09, 50-04, and 60-02 had significantly reduced leaf spot scores, while lines from families 43-09, 44-10, and 63-06 had high pod yields. One line combined both resistance to leaf spot and high pod yield, and several other useful lines were also identified. Results suggest that it is possible to break linkage drag for low yield that accompanies resistance. However, results also suggest that resistance was diluted in many of the breeding lines, likely a result of the multigenic nature of resistance. Future QTL analysis may be useful to identify alleles for resistance and allow recombination and pyramiding of resistance alleles while reducing linkage drag.

6.
Front Plant Sci ; 12: 664243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058940

RESUMO

Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using visual characterization or laboratory analysis requires substantial expertise, time, and resources. A less subjective and more precise method is needed for identification of peanut germplasm throughout the value chain. In this proof-of-principle study, the accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in peanut phenotyping and identification is explored. We show that RS can be used for highly accurate peanut phenotyping via surface scans of peanut leaves and the resulting chemometric analysis: On average 94% accuracy in identification of peanut cultivars and breeding lines was achieved. Our results also suggest that RS can be used for highly accurate determination of nematode resistance and susceptibility of those breeding lines and cultivars. Specifically, nematode-resistant peanut cultivars can be identified with 92% accuracy, whereas susceptible breeding lines were identified with 81% accuracy. Finally, RS revealed substantial differences in biochemical composition between resistant and susceptible peanut cultivars. We found that resistant cultivars exhibit substantially higher carotenoid content compared to the susceptible breeding lines. The results of this study show that RS can be used for quick, accurate, and non-invasive identification of genotype, nematode resistance, and nutrient content. Armed with this knowledge, the peanut industry can utilize Raman spectroscopy for expedited breeding to increase yields, nutrition, and maintaining purity levels of cultivars following release.

7.
Genes (Basel) ; 11(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080972

RESUMO

The use of molecular markers in plant breeding has become a routine practice, but the cost per accession can be a hindrance to the routine use of Quantitative Trait Loci (QTL) identification in breeding programs. In this study, we demonstrate the use of targeted re-sequencing as a proof of concept of a cost-effective approach to retrieve highly informative allele information, as well as develop a bioinformatics strategy to capture the genome-specific information of a polyploid species. SNPs were identified from alignment of raw transcriptome reads (2 × 50 bp) to a synthetic tetraploid genome using BWA followed by a GATK pipeline. Regions containing high polymorphic SNPs in both A genome and B genomes were selected as targets for the resequencing study. Targets were amplified using multiplex PCR followed by sequencing on an Illumina HiSeq. Eighty-one percent of the SNP calls in diploids and 68% of the SNP calls in tetraploids were confirmed. These results were also confirmed by KASP validation. Based on this study, we find that targeted resequencing technologies have potential for obtaining maximum allele information in allopolyploids at reduced cost.


Assuntos
Arachis/genética , Cromossomos de Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tetraploidia , Alelos , Biologia Computacional , Melhoramento Vegetal
8.
G3 (Bethesda) ; 6(12): 3825-3836, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27729436

RESUMO

To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.


Assuntos
Arachis/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Genética Populacional , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
9.
J Agric Food Chem ; 50(25): 7362-5, 2002 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-12452659

RESUMO

The high-oleic trait of peanut (Arachis hypogaea L.) has been suggested to have a positive impact on the roasted peanut sensory attribute. A series of lines derived by backcrossing the high-oleic trait into several existing cultivars were compared with their parent cultivars at locations in Florida, Georgia, North Carolina, and Texas. Breeders grew their high-oleic lines and parents in three-replicate tests at one or two locations. The Florida high-oleic line F435-2-3-B-2-1-b4-B-B-3-b3-b3-1-B was grown at each location. The test included normal- and high-oleic variants of F435, GK 7, NC 7, NC 9, Sunrunner, Tamrun 96, and Tamspan 90. Sound-mature kernel samples were roasted, ground into paste, and evaluated by a sensory panel using a 14-point flavor intensity unit (fiu) scale. Background genotype had an effect (P < 0.01) on the heritable sensory attributes roasted peanut, sweet, and bitter. Oleate level had a positive effect on roasted peanut intensity, increasing it by 0.3 fiu averaged across all seven background genotypes. However, the magnitude of improvement varied across background genotypes. The high-oleic trait had no effect or increased the intensity of the roasted peanut attribute in each background genotype. The increase was greatest in Tamrun 96 (+0.6 fiu, P < 0.05) and Spanish genotypes Tamspan 90 (+0.4 fiu, P < 0.05) and F435 (+0.4 fiu, P < 0.10). A change of 0.5 fiu or more should be perceptible to consumers. Interaction between oleate level and background genotype was detected for sweet (P < 0.10) and bitter (P < 0.01) attributes. The trait had an increasing effect on the bitter attribute only in the background genotype of Tamspan 90 (+0.7 fiu, P < 0.01). There was a nonsignificant increase in bitterness in the other Spanish background genotype, F435. Changes in bitterness in runner- and Virginia-type backgrounds were close to zero. Incorporation of the high-oleic trait into peanut cultivars is likely to improve the intensity of the roasted peanut attribute, but it may also increase the bitter attribute in Spanish genotypes.


Assuntos
Arachis/química , Arachis/genética , Endogamia , Ácido Oleico/análise , Paladar , Genótipo , Temperatura Alta , Humanos , Sementes/química
10.
PLoS One ; 9(12): e115055, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551607

RESUMO

The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751 bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278-1641 bp in Arachis hypogaea (AABB), 1401-1492 bp in Arachis duranensis (AA), and 1107-1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2 × 50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.


Assuntos
Arachis/genética , Diploide , Perfilação da Expressão Gênica/métodos , Poliploidia , Análise de Sequência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Genome ; 52(2): 107-19, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19234559

RESUMO

The cultivated peanut Arachis hypogaea is a tetraploid, likely derived from A- and B-genome species. Reproductive isolation of the cultigen has resulted in limited genetic variability for important traits. Artificial hybridizations using selected diploid parents have introduced alleles from wild species, but improved understanding of recently classified B-genome accessions would aid future introgression work. To this end, 154 cDNA probes were used to produce 1887 RFLP bands scored on 18 recently classified or potential B-genome accessions and 16 previously identified species. One group of B-genome species consisted of Arachis batizocoi, Arachis cruziana, Arachis krapovickasii, and one potential additional species; a second consisted of Arachis ipaënsis, Arachis magna, and Arachis gregoryi. Twelve uncharacterized accessions grouped with A-genome species. Many RFLP markers diagnostic of A. batizocoi group specificity mapped to linkage group pair 2/12, suggesting selection or genetic control of chromosome pairing. The combination of Arachis duranensis and A. ipaënsis most closely reconstituted the marker haplotype of A. hypogaea, but differences allow for other progenitors or genetic rearrangements after polyploidization. From 2 to 30 alleles per locus were present, demonstrating section Arachis wild species variation of potential use for expanding the cultigen's genetic basis.


Assuntos
Arachis/genética , Genoma de Planta , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/química , Marcadores Genéticos , Filogenia , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA