Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608840

RESUMO

Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example, low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiments. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to coordinately increase or decrease within clustered pathways. Next, we analyzed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.


Assuntos
Lipoproteínas , Poli-Hidroxialcanoatos , Proteômica , Pseudomonas putida , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Proteômica/métodos , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Lectinas de Plantas
2.
Am J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032600

RESUMO

Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Here, the authors used orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, to define the impacts of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice develop cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, the authors cross-validate with two cancer types, evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.

3.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382296

RESUMO

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Assuntos
Células Endoteliais , Eritropoetina , Animais , Camundongos , Hiperplasia , Hibridização in Situ Fluorescente , Miócitos Cardíacos , RNA , RNA Mensageiro/genética
4.
Am J Physiol Heart Circ Physiol ; 326(6): H1515-H1537, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639740

RESUMO

Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.


Assuntos
Cardiotoxicidade , Doenças Cardiovasculares , Neoplasias , Humanos , Doenças Cardiovasculares/etiologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Fatores de Risco , Cardio-Oncologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39093000

RESUMO

Cardiac fibroblasts play a pivotal role in maintaining heart homeostasis by depositing extracellular matrix (ECM) to provide structural support for the myocardium, vasculature, and neuronal network and by contributing to essential physiological processes. In response to injury such as myocardial infarction or pressure overload, fibroblasts become activated, leading to increased ECM production that can ultimately drive left ventricular remodeling and progress to heart failure. Recently, the AJP-Heart and Circulatory Physiology issued a call for papers on cardiac fibroblasts that yielded articles with topics spanning fibroblast physiology, technical considerations, signaling pathways, and interactions with other cell types. This mini-review summarizes those articles and places the new findings in the context of what is currently known for cardiac fibroblasts and what future directions remain.

6.
EMBO Rep ; 23(4): e51932, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080333

RESUMO

Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL-4/6), chemokines (IL-8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore-forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.


Assuntos
Lisossomos , Membrana Celular/metabolismo , Proliferação de Células , Lisossomos/metabolismo
7.
J Nat Prod ; 86(9): 2151-2161, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37703852

RESUMO

Prostate cancer is the fifth leading cause of cancer death in men, responsible for over 375,000 deaths in 2020. Novel therapeutic strategies are needed to improve outcomes. Cannabinoids, chemical components of the cannabis plant, are a possible solution. Preclinical evidence demonstrates that cannabinoids can modulate several cancer hallmarks of many tumor types. However, the therapeutic potential of cannabinoids in prostate cancer has not yet been fully explored. The aim of this study was to investigate the antiproliferative and anti-invasive properties of cannabidiol (CBD) in prostate cancer cells in vitro. CBD inhibited cell viability and proliferation, accompanied by reduced expression of key cell cycle proteins, specifically cyclin D3 and cyclin-dependent kinases CDK2, CDK4, and CDK1, and inhibition of AKT phosphorylation. The effects of CBD on cell viability were not blocked by cannabinoid receptor antagonists, a transient receptor potential vanilloid 1 (TRPV1) channel blocker, or an agonist of the G-protein-coupled receptor GPR55, suggesting that CBD acts independently of these targets in prostate cancer cells. Furthermore, CBD reduced the invasiveness of highly metastatic PC-3 cells and increased protein expression of E-cadherin. The ability of CBD to inhibit prostate cancer cell proliferation and invasiveness suggests that CBD may have potential as a future chemotherapeutic agent.


Assuntos
Canabidiol , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Canabidiol/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Próstata , Proliferação de Células
8.
J Am Soc Nephrol ; 33(8): 1546-1567, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35906089

RESUMO

BACKGROUND: Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS: We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS: Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION: These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.


Assuntos
Podócitos , Actinina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Basal Glomerular/metabolismo , Camundongos , Proteínas Oncogênicas/metabolismo , Podócitos/metabolismo , Proteômica
9.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836842

RESUMO

Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1ß secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.


Assuntos
Peptídeos Penetradores de Células , NF-kappa B , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Peptídeos Penetradores de Células/farmacologia , Células HeLa , Leite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia
10.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058252

RESUMO

BACKGROUND: Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS: We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS: Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION: This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.


Assuntos
Fumar Cigarros , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Fumar Cigarros/efeitos adversos , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Nicotiana
11.
Inorg Chem ; 61(38): 14947-14961, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094851

RESUMO

The synthesis and photophysical characterization of two osmium(II) polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2',3'-c]phenazine) and dppp2 (pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene) ancillary ligands, are reported. The complexes exhibit complex electrochemistry with five distinct reductive redox couples, the first of which is assigned to a TAP-based process. The complexes emit in the near-IR (1 at 761 nm and 2 at 740 nm) with lifetimes of >35 ns with a low quantum yield of luminescence in aqueous solution (∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT and GC oligodeoxynucleotides with high affinities. In the presence of natural DNA, the visible absorption spectra are found to display significant hypochromic shifts, which is strongly evident for the ligand-centered π-π* dppp2 transition at 355 nm, which undergoes 46% hypochromism. The emission of both complexes increases upon DNA binding, which is observed to be sensitive to the Δ or Λ enantiomer and the DNA composition. A striking result is the sensitivity of Λ-2 to the presence of AT DNA, where a 6-fold enhancement of luminescence is observed and reflects the nature of the binding for the enantiomer and the protection from solution. Thermal denaturation studies show that both complexes are found to stabilize natural DNA. Finally, cellular studies show that the complexes are internalized by cultured mammalian cells and localize in the nucleus.


Assuntos
Substâncias Intercalantes , Rutênio , Animais , DNA/química , Substâncias Intercalantes/química , Ligantes , Mamíferos/metabolismo , Oligodesoxirribonucleotídeos , Osmio , Fenantrolinas/química , Fenazinas/química , Rutênio/química
12.
BMC Bioinformatics ; 22(1): 427, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496765

RESUMO

BACKGROUND: In mammalian cells the endoplasmic reticulum (ER) comprises a highly complex reticular morphology that is spread throughout the cytoplasm. This organelle is of particular interest to biologists, as its dysfunction is associated with numerous diseases, which often manifest themselves as changes to the structure and organisation of the reticular network. Due to its complex morphology, image analysis methods to quantitatively describe this organelle, and importantly any changes to it, are lacking. RESULTS: In this work we detail a methodological approach that utilises automated high-content screening microscopy to capture images of cells fluorescently-labelled for various ER markers, followed by their quantitative analysis. We propose that two key metrics, namely the area of dense ER and the area of polygonal regions in between the reticular elements, together provide a basis for measuring the quantities of rough and smooth ER, respectively. We demonstrate that a number of different pharmacological perturbations to the ER can be quantitatively measured and compared in our automated image analysis pipeline. Furthermore, we show that this method can be implemented in both commercial and open-access image analysis software with comparable results. CONCLUSIONS: We propose that this method has the potential to be applied in the context of large-scale genetic and chemical perturbations to assess the organisation of the ER in adherent cell cultures.


Assuntos
Retículo Endoplasmático , Processamento de Imagem Assistida por Computador , Animais , Linhagem Celular , Humanos , Software
13.
Bioinformatics ; 36(11): 3343-3349, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142105

RESUMO

MOTIVATION: The subcellular location of a protein can provide useful information for protein function prediction and drug design. Experimentally determining the subcellular location of a protein is an expensive and time-consuming task. Therefore, various computer-based tools have been developed, mostly using machine learning algorithms, to predict the subcellular location of proteins. RESULTS: Here, we present a neural network-based algorithm for protein subcellular location prediction. We introduce SCLpred-EMS a subcellular localization predictor powered by an ensemble of Deep N-to-1 Convolutional Neural Networks. SCLpred-EMS predicts the subcellular location of a protein into two classes, the endomembrane system and secretory pathway versus all others, with a Matthews correlation coefficient of 0.75-0.86 outperforming the other state-of-the-art web servers we tested. AVAILABILITY AND IMPLEMENTATION: SCLpred-EMS is freely available for academic users at http://distilldeep.ucd.ie/SCLpred2/. CONTACT: catherine.mooney@ucd.ie.


Assuntos
Biologia Computacional , Via Secretória , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação , Proteínas/metabolismo
14.
BMC Microbiol ; 21(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397288

RESUMO

BACKGROUND: Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS: In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS: This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.


Assuntos
Campylobacter jejuni/fisiologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Imagem Molecular/métodos , Novobiocina/farmacologia , Aerobiose , Animais , Aderência Bacteriana/efeitos dos fármacos , Campylobacter jejuni/efeitos dos fármacos , Galinhas/microbiologia , Matriz Extracelular de Substâncias Poliméricas/química , Ensaios de Triagem em Larga Escala , Compostos Orgânicos/química , Rodaminas/química
15.
EMBO Rep ; 20(10): e47625, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432619

RESUMO

Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.


Assuntos
Cílios/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Padronização Corporal , Linhagem Celular , Células HEK293 , Humanos , Membranas/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Nucleotídeos/metabolismo , Ligação Proteica , Transporte Proteico , Telomerase/metabolismo
16.
Mol Ther ; 28(4): 1190-1199, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32059764

RESUMO

MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3' untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3' UTR 298-305:miR-145-5p or 166-173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung.


Assuntos
Brônquios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/terapia , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Adulto , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Indóis/farmacologia , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Nanopartículas , Oligonucleotídeos/genética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quinolonas/farmacologia
17.
J Physiol ; 598(4): 683-697, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845331

RESUMO

KEY POINTS: Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT: TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic ß-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias/fisiopatologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas/fisiologia , Animais , Cardiomiopatias/genética , Dieta Hiperlipídica , Feminino , Proteínas Ativadoras de GTPase/genética , Técnicas de Inativação de Genes , Glucose/metabolismo , Ventrículos do Coração/fisiopatologia , Insulina , Masculino , Músculo Esquelético , Proteínas/genética , Ratos , Fatores Sexuais
18.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674086

RESUMO

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Assuntos
Cardiopatias , Distrofia Muscular de Duchenne , Animais , Metabolismo Energético , Cardiopatias/metabolismo , Ventrículos do Coração , Humanos , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 318(5): H1139-H1158, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216614

RESUMO

Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases: 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.


Assuntos
Pressão Sanguínea , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Guias de Prática Clínica como Assunto , Função Ventricular , Animais , Testes de Função Cardíaca/métodos , Testes de Função Cardíaca/normas
20.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244909

RESUMO

One remarkable characteristic of eukaryotic cells is the complexity of their membrane systems [...].


Assuntos
Membranas Intracelulares/metabolismo , Mamíferos/metabolismo , Animais , Humanos , Lipídeos/química , Microdomínios da Membrana/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA