Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120462

RESUMO

Immunotherapy response is associated with the presence of conventional dendritic cells (cDCs). cDC type 1 (cDC1) is critically important for CD8+ T cell activation, cDC type 2 (cDC2) regulates CD4+ T cell responses, and mature regulatory cDCs may dampen T cell responses in the tumor microenvironment (TME). However, we lack a clear understanding of cDC distribution in the human TME, cDC prevalence in metastatic sites, and cDC differences in early- versus late-stage disease. Rapid autopsy specimens of 10 patients with lung adenocarcinoma were evaluated to detect cDCs and immune cells via multiplex immunofluorescence using 18 markers and 42 tumors. First, we found that T cells, cDC1, and cDC2 were confined to stroma, whereas mature regulatory DCs were enriched in tumor, suggesting unique localization-specific functions. Second, lung and lymph node tumors were more enriched in T cells and cDCs than liver tumors, underscoring differences in the TME of metastatic sites. Third, although the proportion of T cells and cDC1 did not differ in different stages, an increase in the proportion of cDC2 and macrophages in late stage suggests potential differences in regulation of T cell responses in different stages. Collectively, these findings provide new, to our knowledge, insights into cDC biology in human cancer that may have important therapeutic implications.

2.
CNS Neurosci Ther ; 30(2): e14561, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421127

RESUMO

AIMS: Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS: The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS: We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS: Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Humanos , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Neurônios , Tratos Piramidais/lesões , Tratos Piramidais/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/terapia , Estimulação Magnética Transcraniana , Estudos Cross-Over
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA