Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Health Insights ; 16: 11786302221139964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466037

RESUMO

Citywide Inclusive Sanitation (CWIS) calls for sustainable urban sanitation services for all, but the definitions of "inclusion" and "sustainability" within the framework leave room for interpretation. This study aims to provide an initial understanding of how these terms are currently interpreted by a range of sanitation actors in six cities of the Global South. Urban sanitation professionals from private (n = 16), public (n = 28), non-governmental (n = 43), and academic (n = 10) institutions were interviewed using a standardized tool, and data was analyzed to identify themes and trends. Terms such as "everyone" or "for all" shed little light on how to ensure inclusion, though disabled people, women, children, and the poor were all highlighted when probed. Greater specificity of beneficiary groups in policy is likely to enhance their visibility within sanitation service provision. All three pillars of sustainability identified within CWIS were referenced, with different stakeholders focusing more closely on environmental, social, or economic sustainability, based on their organizational goals and interests. Greater collaboration may foster a balanced view across the pillars, with different organizations acting as champions for each one. The findings can facilitate discussions on a shared understanding of multi-stakeholder engagement in achieving inclusive and sustainable sanitation service provision.

2.
Sci Total Environ ; 796: 149024, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328886

RESUMO

Safe and accessible water services for hand hygiene are critical to human health and well-being. However, access to handwashing facilities is limited in cities in the Global South, where rapid urbanisation, service backlogs, lack of infrastructure and capacity, and water scarcity impact on the ability of local governments to provide them. Community participation and the co-production of knowledge in the development of innovative technologies, which are aligned with Water, Sanitation and Hygiene (WASH) principles, can lead to more sustainable and socially-acceptable hand hygiene systems. This paper presents the outcomes of the testing of the Autarky handwashing station, a technology that provides onsite treatment and recycling of handwashing water, in an informal settlement in Durban, South Africa. The transdisciplinary research approach adopted enabled the participation of multiple stakeholders with different knowledge systems in the framing, testing and evaluation of the system. The process of co-producing knowledge, as well as the outcomes of the testing, namely high levels of functionality and social acceptability of the technology, supported the WASH principles. The evaluation revealed that the Autarky handwashing station is a niche intervention that improved access to safe and appealing handwashing facilities in an informal settlement. Its novel design, socially desirable features, reliability and ability to save water increased its acceptance in the community. The testing of the system in a real-world context revealed the value of including communities in knowledge production processes for technology innovation. Further work is required to ensure that real-time monitoring of system function is feasible before such systems can be implemented at larger scale.


Assuntos
Desinfecção das Mãos , Higiene das Mãos , Humanos , Reprodutibilidade dos Testes , Saneamento , África do Sul , Abastecimento de Água
3.
Sci Total Environ ; 755(Pt 2): 143284, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168239

RESUMO

The provision of water and sanitation for all that is safe, dignified, reliable, affordable and sustainable is a major global challenge. While centralized sewer-based sanitation systems remain the dominant approach to providing sanitation, the benefits of non-sewered onsite sanitation systems are increasingly being recognised. This paper presents the outcomes of the testing of the Blue Diversion Autarky Toilet (BDAT), a sanitation system providing hygiene and dignity without relying on water and wastewater infrastructure, in a peri-urban household in Durban, South Africa. The BDAT was used by a single household as their only form of sanitation during three months of technical and social testing. An analysis based on technical data in combination with interpretive, qualitative research methods revealed that the BDAT functioned well and achieved high levels of social acceptance in the test household. The flushing, cleanliness and odour-free nature of the sanitation technology, its functionality, the household's previous sanitation experience, and their experience with and understanding of water scarcity, were the main factors underpinning their positive response to this innovation in sanitation. The testing process resulted in broader developmental benefits for the household, including improved basic services due to the upgrading of the electrical and existing sanitation system, social learning, and improved relationships between household members and the local state. A transdisciplinary research process, which emerged through the assessment, enabled the integration of different forms of knowledge from multiple actors to address the complexity of problems related to the development of socially just sanitation. The benefit of engaging with societal actors in sanitation innovation and assessing its outcomes using both the technical and social sciences is evident in this paper.


Assuntos
Higiene , Saneamento , Características da Família , África do Sul , Abastecimento de Água
4.
Water Res X ; 7: 100051, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32462136

RESUMO

On-site wastewater reuse can improve global access to clean water, sanitation and hygiene. We developed a treatment system (aerated bioreactor, ultrafiltration membrane, granular activated carbon and electrolysis for chlorine disinfection) that recycles hand washing and toilet flush water. Three prototypes were field-tested in non-sewered areas, one in Switzerland (hand washing) and two in South Africa (hand washing, toilet flushing), over periods of 63, 74 and 94 days, respectively. We demonstrated that the system is able to recycle sufficient quantities of safe and appealing hand washing and toilet flush water for domestic or public use in real-life applications. Chemical contaminants were effectively removed from the used water in all prototypes. Removal efficiencies were 99.7% for the chemical oxygen demand (COD), 98.5% for total nitrogen (TN) and 99.9% for phosphate in a prototype treating hand washing water, and 99.8% for COD, 95.7% for TN and 89.6% for phosphate in a prototype treating toilet flush water. While this system allowed for true recycling for the same application, most on-site wastewater reuse systems downcycle the treated water, i.e., reuse it for an application requiring lower water quality. An analysis of 18 selected wastewater reuse specifications revealed that at best these guidelines are only partially applicable to innovative recycling systems as they are focused on the downcycling of water to the environment (e.g., use for irrigation). We believe that a paradigm shift is necessary and advocate for the implementation of risk-based (and thus end-use dependent) system performance targets to evaluate water treatment systems, which recycle and not only downcycle water.

5.
Sci Total Environ ; 703: 135469, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31732183

RESUMO

Innovations that enable cost-effective and resource-conserving treatment of human waste are required for the 4.2 billion people in the world who currently lack safe and reliable sanitation services. Onsite treatment and reuse of blackwater is one strategy towards this end, greatly reducing the need to transport wastewater over long distances either via sewers or trucks. Here, we report on the field testing of a prototype onsite blackwater treatment system conducted over a period of 8 months. The system was connected to a women's toilet in a public communal ablution block located in an informal settlement near Durban, South Africa. Liquid waste was treated by separation and diversion of large solids, settling of suspended solids, and filtration through activated carbon prior to disinfection by electrochemical oxidation. System performance was monitored daily by measurement of chemical and physical water quality parameters onsite and confirmed by periodic detailed analysis of chemical and biological parameters at an offsite lab. Daily monitoring of system performance indicated that the effluent had minimal color and turbidity (maximum 90 Pt/Co units and 6.48 NTU, respectively), and consistent evolution of chlorine as blackwater passed through the system. Weekly offsite analysis confirmed that the system consistently inactivated pathogens (E. coli and coliforms) and reduced chemical oxygen demand and total suspended solids to meet ISO 30500 category B standards. Significant reductions in total nitrogen load were also observed, though these reductions often fell short of the 70% reduction required by ISO 30500. No significant reduction in total phosphorus was observed. Maintenance requirements were identified, and the resilience of the system to restart following a prolonged shutdown was demonstrated, but significant improvements are required in the design of the solid/liquid separation mechanism for application of this system in a wiping culture.


Assuntos
Características da Família , Eliminação de Resíduos Líquidos/métodos , África do Sul , Águas Residuárias
6.
Sci Total Environ ; 668: 419-431, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852218

RESUMO

A prototype of a non-fluid based mechanical toilet flush was tested in a semi-public, institutional setting and in selected peri-urban households in eThekwini municipality, Republic of South Africa. The mechanism's functionality and users' perception of the flush were assessed. User perception varied depending on background: Users accustomed to porcelain water flush toilets were open to, yet reserved about the idea of using a waterless flush in their homes. Those who commonly use Urine Diversion Dehydration Toilets were far more receptive. The user-centred field trials were complemented by a controlled laboratory experiment, using synthetic urine, -faeces, and -menstrual blood, to systematically assess the efficiency of three swipe materials to clean the rotating bowl of the flush. A silicone rubber with oil-bleed-effect was found to be the best performing material for the swipe. Lubrication of the bowl prior to use further reduced fouling. A mechanical waterless flush that does not require consumables, like plastic wrappers, is a novelty and could - implemented in existing dry toilet systems - improve acceptance and thus the success of waterless sanitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA