Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(15): 153601, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897755

RESUMO

Nonlinear mechanical resonators display rich and complex dynamics and are important in many areas of fundamental and applied sciences. Here, we present a general strategy to generate mechanical nonlinearities for trapped particles by transverse driving in a funnel-shaped potential. Employing a trapped ion platform, we study the nonlinear oscillation, bifurcation, and hysteresis of a single calcium ion and demonstrate a 20-fold enhancement of the signal from a zeptonewton-magnitude harmonic force through the effect of vibrational resonance. Our results represent a first step in combining the rich nonlinear dynamics with the precision control over mechanical motions offered by atomic physics and open up possibilities for exploiting nonlinear mechanical phenomena in the quantum regime.

2.
Phys Rev Lett ; 123(10): 106802, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573288

RESUMO

Single dopant atoms or dopant-related defect centers in a solid state matrix are of particular importance among the physical systems proposed for quantum computing and communication, due to their potential to realize a scalable architecture compatible with electronic and photonic integrated circuits. Here, using a deterministic source of single laser-cooled Pr^{+} ions, we present the fabrication of arrays of praseodymium color centers in yttrium-aluminum-garnet substrates. The beam of single Pr^{+} ions is extracted from a Paul trap and focused down to 30(9) nm. Using a confocal microscope, we determine a conversion yield into active color centers of up to 50% and realize a placement precision of 34 nm.

3.
Phys Rev Lett ; 117(4): 043001, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494469

RESUMO

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 µm circular hole structure to a precision of 2.7 nm using only 579 probe particles.

4.
Sci Rep ; 6: 28078, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306426

RESUMO

We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10(-27)). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.

5.
Science ; 352(6283): 325-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27081067

RESUMO

Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

6.
Phys Rev Lett ; 93(16): 163001, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15524984

RESUMO

We report on the observation of ultralong range interactions in a gas of cold rubidium Rydberg atoms. The van der Waals interaction between a pair of Rydberg atoms separated as far as 100,000 Bohr radii features two important effects: spectral broadening of the resonance lines and suppression of excitation with increasing density. The density dependence of these effects is investigated in detail for the S- and P-Rydberg states with principal quantum numbers n approximately 60 and n approximately 80 excited by narrow-band continuous-wave laser light. The density-dependent suppression of excitation can be interpreted as the onset of an interaction-induced local blockade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA