Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Blood ; 140(25): 2722-2729, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998675

RESUMO

Heparin-induced thrombocytopenia (HIT) is suspected much more often than it is confirmed. Technically simple platelet factor 4 (PF4)-polyanion enzyme-linked immunosorbent assays (ELISAs) are sensitive but nonspecific. In contrast, accurate functional tests such as the serotonin release assay, heparin-induced platelet activation assay, and PF4-dependent P-selectin expression assay require fresh platelets and have complex assay end points, limiting their availability to specialized reference laboratories. To enable broad deployment of functional testing, we sought to extend platelet viability significantly by optimizing storage conditions and developed a simple functional assay end point by measuring the release of a platelet α-granule protein, thrombospondin-1 (TSP1), in an ELISA format. Platelet cryopreservation conditions were optimized by freezing platelets at controlled cooling rates that preserve activatability. Several-month-old cryopreserved platelets were treated with PF4 or heparin and were evaluated for their ability to be activated by HIT and vaccine-induced immune thrombotic thrombocytopenia (VITT) antibodies in the TSP1 release assay (TRA). HIT and spontaneous HIT patient samples induced significantly higher TSP1 release using both PF4-treated (PF4-TRA) and heparin-treated cryopreserved platelets relative to samples from patients suspected of HIT who lacked platelet-activating antibodies. This latter group included several patients that tested strongly positive in PF4-polyanion ELISA but were not platelet-activating. Four VITT patient samples tested in the TRA activated PF4-treated, but not heparin-treated, cryopreserved platelets, consistent with recent data suggesting the requirement for PF4-treated platelets for VITT antibody detection. These findings have the potential to transform the testing paradigm in HIT and VITT, making decentralized, technically simple functional testing available for rapid and accurate in-hospital diagnosis.


Assuntos
Anticorpos , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Anticorpos/análise , Anticoagulantes/efeitos adversos , Criopreservação , Heparina/efeitos adversos , Fator Plaquetário 4 , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/diagnóstico , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Vacinas/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Plaquetas
2.
Angew Chem Int Ed Engl ; 62(30): e202304471, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37243932

RESUMO

Access to 1,3-functionalized azetidines through a diversity-oriented approach is highly sought-after for finding new applications in drug-discovery. To this goal, strain-release-driven functionalization of azabicyclo[1.1.0]-butane (ABB) has generated significant interest. Through appropriate N-activation, C3-substituted ABBs are shown to render tandem N/C3-fucntionalization/rearrangement, furnishing azetidines; although, modalities of such N-activation vis-à-vis N-functionalization remain limited to selected electrophiles. This work showcases a versatile cation-driven activation strategy of ABBs. And capitalizes on the use of Csp3 precursors amenable to forming reactive (aza)oxyallyl cations in situ. Herein, N-activation leads to formation of a congested C-N bond, and effective C3 activation. The concept was extended to formal [3+2] annulations involving (aza)oxyallyl cations and ABBs, leading to bridged bicyclic azetidines. Besides the fundamental appeal of this new activation paradigm, operational simplicity and remarkable diversity should engender its prompt use in synthetic and medicinal chemistry.

3.
Chemistry ; 28(62): e202201208, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35943863

RESUMO

Herein, development and detailed investigation of a SN '-type intramolecular aromatic substitution reaction involving α-arylazaoxyallyl cation intermediate, is disclosed. The study showcased that while α-aryl-α-chlorohydroxamate could be activated by a combination of base and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) into the corresponding azaoxyallyl cations, it could further emerge into a π-extended species involving the adjacent α-aryl moiety, and this transition is contingent on electronic effects of the aromatic ring as well as on α-substituents. An effective activation of the α-aromatic ring could pave the path for intramolecular Ar(Csp2 )-N bond formation towards oxindoles. Control experiments and DFT calculations suggested that a non-pericyclic nucleophilic amination pathway is most likely operative and precluded the possibility of concerted or electrophilic amination mechanism. HFIP as the reaction solvent plays pivotal roles in the transformation.


Assuntos
Aminação , Oxindóis , Cátions
4.
Am J Hematol ; 97(5): 519-526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132672

RESUMO

Rare cases of COVID-19 vaccinated individuals develop anti-platelet factor 4 (PF4) antibodies that cause thrombocytopenia and thrombotic complications, a syndrome referred to as vaccine-induced immune thrombotic thrombocytopenia (VITT). Currently, information on the characteristics and persistence of anti-PF4 antibodies that cause VITT after Ad26.COV2.S vaccination is limited, and available diagnostic assays fail to differentiate Ad26.COV2.S and ChAdOx1 nCoV-19-associated VITT from similar clinical disorders, namely heparin-induced thrombocytopenia (HIT) and spontaneous HIT. Here we demonstrate that while Ad26.COV2.S-associated VITT patients are uniformly strongly positive in PF4-polyanion enzyme-linked immunosorbent assays (ELISAs); they are frequently negative in the serotonin release assay (SRA). The PF4-dependent p-selectin expression assay (PEA) that uses platelets treated with PF4 rather than heparin consistently diagnosed Ad26.COV2.S-associated VITT. Most Ad26.COV2.S-associated VITT antibodies persisted for >5 months in PF4-polyanion ELISAs, while the PEA became negative earlier. Two patients had otherwise unexplained mild persistent thrombocytopenia (140-150 x 103 /µL) 6 months after acute presentation. From an epidemiological perspective, differentiating VITT from spontaneous HIT, another entity that develops in the absence of proximate heparin exposure, and HIT is important, but currently available PF4-polyanion ELISAs and functional assay are non-specific and detect all three conditions. Here, we report that a novel un-complexed PF4 ELISA specifically differentiates VITT, secondary to both Ad26.COV2.S and ChAdOx1 nCoV-19, from both spontaneous HIT, HIT and commonly-encountered HIT-suspected patients who are PF4/polyanion ELISA-positive but negative in functional assays. In summary, Ad26.COV2.S-associated VITT antibodies are persistent, and the un-complexed PF4 ELISA appears to be both sensitive and specific for VITT diagnosis.


Assuntos
COVID-19 , Trombocitopenia , Vacinas , Ad26COVS1 , COVID-19/diagnóstico , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Heparina/efeitos adversos , Humanos , Fator Plaquetário 4 , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico
5.
Arterioscler Thromb Vasc Biol ; 41(2): 638-650, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267664

RESUMO

OBJECTIVE: Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS: Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Placa Aterosclerótica , Transdução de Sinais , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
8.
J Org Chem ; 84(23): 15255-15266, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31702149

RESUMO

A new [3 + 3]- and [3 + 4]-annulation strategy involving azaoxyallyl cation and [1,m]-amphoteric compounds (m = 3,4) is presented. This concise method enables easy assembly of functionalized saturated N-heterocycles, comprised of six-and seven-membered rings and is of high significance in the context of drug discovery approaches. This reaction also represents a new trapping modality of the azaoxyallyl cation with amphoteric agents of different chain lengths that consist of a heteroatom nucleophilic site and a π-electrophilic site.

9.
Eur J Immunol ; 46(10): 2388-2400, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480067

RESUMO

Increased plasma level of von Willebrand Factor (vWF) is associated with major cardiovascular diseases. We previously reported that multimeric vWF binds to NO synthase and inhibits insulin-induced production of NO, thus promoting insulin resistance during acute hypoxia (AH). However, the transcriptional regulation of vWF during AH is not clearly understood. Here, we investigated the mechanisms underlying the upregulation of vwf in mice. AH significantly upregulates the tlr2, tlr3, myd88, and vwf expression and phosphorylation of specificity protein 1 (SP1). Furthermore, AH significantly upregulates high mobility group box-1 (HMGB1) in a time-dependent manner. Moreover, a TLR2 agonist upregulates vWF but a TLR3 agonist does not. Pretreatment with an HMGB1 inhibitor, TLR2-immunoneutralizing antibody, or SP1 inhibitor significantly inhibits vWF expression. Furthermore, Tlr2 silencing completely inhibited MYD88, vWF expression, and SP1 phosphorylation. However, pretreatment with glycyrrhizic acid or silencing of Tlr2 completely blocks binding of Sp1 to the Vwf promoter, thus inhibiting its expression, and enhances insulin resistance during AH. Patients with type 2 diabetes mellitus also showed significantly elevated levels of HMGB1, TLR2, SP1, and vWF, thereby supporting the results of the murine model of AH. Taken together, HMGB1 upregulates vWF in vivo through the TLR2-MYD88-SP1 pathway in mice.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Proteína HMGB1/metabolismo , Hipóxia/imunologia , Fator de von Willebrand/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Células Cultivadas , Diabetes Mellitus Tipo 2/terapia , Ácido Glicirrízico/farmacologia , Proteína HMGB1/genética , Humanos , Hipóxia/terapia , Imunoglobulinas/metabolismo , Resistência à Insulina , Camundongos , Terapia de Alvo Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Regulação para Cima
10.
Eur J Immunol ; 45(11): 3158-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26350442

RESUMO

Endogenous ligands released from dying cells, including extracellular RNA (eRNA), cause TLR activation, which is associated with inflammation and vascular diseases. However, the importance of this response in acute hypoxia (AH) remains unexplored. Here, we observed eRNA-mediated TLR3 activation during exposure of mice to AH in the absence of exogenous viral stimuli. RNaseA treatment diminished AH-induced expression of IFN and cell adhesion molecules (CAMs) and myeloid cell infiltration in the lung, and TLR3 gene silencing or neutralization with antibodies markedly attenuated AH- or poly I:C-induced IFN and CAM expression and leukocyte adhesion (LA) and myeloid cell infiltration in the lung. However, RNaseA treatment or TLR3 gene silencing failed to alter AH-induced cell death and proliferation in lung vasculature. Furthermore, IFN-γ--but not IFN-α--regulated AH-induced CAM expression and LA. Treatment with RNaseA, TLR3 siRNA, neutralizing antibodies, or a STAT1 inhibitor substantially decreased AH- and poly I:C-induced STAT1 phosphorylation, CAM expression, and myeloid cell infiltration, suggesting a central role for STAT1 phosphorylation in AH-induced LA and infiltration. We conclude that eRNA activates TLR3 and facilitates, through in vivo IFN-γ-STAT1 signaling, AH-induced leukocyte infiltration in the lung. Thus, RNaseA might provide a therapeutic alternative for patients with lung diseases.


Assuntos
Hipóxia/patologia , Leucócitos/metabolismo , Pulmão/patologia , RNA/metabolismo , Transdução de Sinais/imunologia , Animais , Western Blotting , Quimiotaxia de Leucócito/fisiologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hipóxia/imunologia , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/metabolismo , Pulmão/imunologia , Camundongos , RNA/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Receptor 3 Toll-Like/metabolismo
11.
Biochemistry ; 53(1): 115-26, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24328140

RESUMO

Hypoxic respiratory diseases or hypoxia exposures are frequently accompanied by glucose intolerance and impaired nitric oxide (NO) availability. However, the molecular mechanism responsible for impaired NO production and insulin resistance (IR) during hypoxia remains obscure. In this study, we investigated the possible mechanism of impaired NO production and IR during hypoxia in a mouse model. Mice were exposed to hypoxia for different periods of time (0-24 h), and parameters of IR and endothelial dysfunctions were analyzed. Exposure to hypoxia resulted in a time-dependent increase in IR as well as multimeric forms of von Willebrand factor (vWF) and subsequently a decrease in eNOS activity. Preincubation with plasma of hypoxia-exposed animals (different time points) or human vWF inhibited insulin-induced NO production in a dose-dependent manner; larger doses of insulin reversed the effect. In contrast, preincubation of vWF-immunodepleted plasma failed to inhibit insulin-induced NO production, whereas vWF immunoneutralization abolished the effect of hypoxia-induced IR and D-[U-(14)C]glucose uptake. Furthermore, the interactions between vWF and eNOS were studied by far-Western blotting, co-immunoprecipitation, and surface plasma resonance spectroscopy. Kinetic analyses showed that the dissociation constant (KD), inhibitory constant (Ki), and half-maximal inhibitory concentration (IC50) were 1.79 × 10(-8) M, 250 pM, and 18.31 pM, respectively, suggesting that vWF binds to eNOS with a high affinity and greater efficacy for activator (insulin) inhibition. These results indicated that vWF, an antagonist of eNOS, inhibits insulin-induced NO production and causes IR.


Assuntos
Hipóxia/fisiopatologia , Resistência à Insulina/fisiologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Fator de von Willebrand/fisiologia , Animais , Eritrócitos/metabolismo , Glucose/metabolismo , Humanos , Concentração Inibidora 50 , Insulina/farmacologia , Cinética , Camundongos
12.
Vascul Pharmacol ; 154: 107249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070759

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.


Assuntos
Aterosclerose , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Cirrose Hepática , Fibrose , Biomarcadores , Aterosclerose/patologia , Fígado/patologia
13.
Vascul Pharmacol ; 155: 107368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548093

RESUMO

Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais , Transdução de Sinais , Humanos , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Aterosclerose/genética , Animais , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Placa Aterosclerótica , Fenótipo
14.
Blood Cells Mol Dis ; 49(2): 92-101, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647506

RESUMO

Hypoxemia in the circulation can lead to venous thrombosis (VT) through tissue factor (TF) activation, but the mechanism of TF activation in hypoxia remains obscure. Ligands released from damaged tissues or cells due to hypoxia are identified by various pattern-recognition receptors (PRR), including Toll-like receptor3 (TLR3). In the present study, we investigated the mechanism of TF activation during acute hypoxia in a rat model. The expression of TLR3 and TF was analyzed by immunoblotting and RT-PCR. The TF activity was evaluated by two-stage chromogenic assay and fibrin deposition was detected by immunohistochemistry. The expression of TLR3, TF, and TF activity was increased significantly 6 h post acute hypoxia and then decreased gradually. The contribution of TLR3 in TF activation was investigated by poly I:C and TLR3 neutralizing antibody. We also found increased ERK phosphorylation both in acute hypoxia and poly I:C treatment. We further showed that the pre-treatment of TLR3 neutralizing antibody or ERK inhibitor (PD98059) 2 h prior to acute hypoxia or poly I:C treatment completely abrogated ERK phosphorylation and TF activation. The pre-treatment of TLR3 neutralizing antibody also inhibited fibrin deposition in lung vasculature. These data indicate that acute hypoxia induced TF activation is mediated through TLR3-ERK1/2 pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipóxia/metabolismo , Tromboplastina/agonistas , Receptor 3 Toll-Like/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibrina/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica , Hipóxia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Tromboplastina/genética , Tromboplastina/metabolismo , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/genética
15.
Chem Commun (Camb) ; 58(54): 7538-7541, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35703384

RESUMO

Herein, a transition metal-free approach for access to 3,3'-disubstituted peroxyoxindole is disclosed, which harnesses a transient azaoxyallyl cation. This strategy is also applicable to the synthesis of structurally diverse α-peroxycarboxylic acid surrogates. The method exhibits good functional group tolerance and is suitable for generating a library of peroxy-containing compounds.


Assuntos
Peróxido de Hidrogênio , Cátions
16.
Front Cardiovasc Med ; 9: 1031293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247464

RESUMO

The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.

17.
Front Cell Dev Biol ; 9: 687598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222255

RESUMO

Small GTPase Rap1 plays a prominent role in endothelial cell (EC) homeostasis by promoting NO release. Endothelial deletion of the two highly homologous Rap1 isoforms, Rap1A and Rap1B, leads to endothelial dysfunction ex vivo and hypertension in vivo. Mechanistically, we showed that Rap1B promotes NO release in response to shear flow by promoting mechanosensing complex formation involving VEGFR2 and Akt activation. However, the specific contribution of the Rap1A isoform to NO release and the underlying molecular mechanisms through which the two Rap1 isoforms control endothelial function are unknown. Here, we demonstrate that endothelial dysfunction resulting from knockout of both Rap1A and Rap1B isoforms is ameliorated by exogenous L-Arg administration to rescue NO-dependent vasorelaxation and blood pressure. We confirmed that Rap1B is rapidly activated in response to agonists that trigger eNOS activation, and its deletion in ECs attenuates eNOS activation, as detected by decreased Ser1177 phosphorylation. Somewhat surprising was the finding that EC deletion of Rap1A does not lead to impaired agonist-induced vasorelaxation ex vivo. Mechanistically, the deletion of Rap1A led to elevated eNOS phosphorylation both at the inhibitory, T495, and the activating Ser1177 residues. These findings indicate that the two Rap1 isoforms act via distinct signaling pathways: while Rap1B directly positively regulates eNOS activation, Rap1A prevents negative regulation of eNOS. Notably, the combined deficiency of Rap1A and Rap1B has a severe effect on eNOS activity and NO release with an in vivo impact on endothelial function and vascular homeostasis.

19.
J Sci Food Agric ; 90(3): 385-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20355057

RESUMO

BACKGROUND: The present study describes the chemical analysis of the essential oil and oleoresins from caraway, which have been studied by using GC-MS. The paper also explains the importance of the extracted oil and oleoresins in the antioxidant activities of target plant species. RESULTS: GC-MS analysis of caraway essential oil showed 51 compounds representing about 96.6% of the total weight. The major components were dillapiole (44.6%), germacrene-beta (14.1%), nothoapiole (8.3%), and beta-selinene (6.8%), along with many other components in minor amounts. Major components in ethyl acetate and iso-octane oleoresins are dillapiole, nothoapiole and germacrene-beta, whereas in ethanol oleoresin contains dillapiole (25%), sitosterol (21.3%) stigmasterol (9.5%) and nothoapiole (8.1%). The antioxidant activity was evaluated by various antioxidant assays such as peroxide, thiobarbituric acid and p-anisidine values. These experiments were further supported by other complementary antioxidant assays such as ferric thiocyanate method in linoleic acid system, reducing power, and scavenging effects on 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Both the caraway volatile oil and its oleoresins showed strong antioxidant activity in comparison with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). CONCLUSION: This study provides additional information about the chemistry and antioxidant activity of caraway. Hence, caraway may be used as natural food preservatives.


Assuntos
Antioxidantes/farmacologia , Carum/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/química , Frutas/química , Óleos Voláteis/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA