Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380734

RESUMO

While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.


Assuntos
Autoanticorpos , Desenho de Fármacos , Receptor Tipo 1 de Angiotensina/agonistas , Angiotensina II , Animais , Especificidade de Anticorpos , Cálcio/metabolismo , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Coelhos , Receptores Opioides , Vasoconstrição/efeitos dos fármacos
2.
J Membr Biol ; 254(3): 293-300, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33471142

RESUMO

GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Regulação Alostérica , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
3.
J Chem Inf Model ; 59(1): 373-385, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30608150

RESUMO

We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.


Assuntos
Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Entropia , Humanos , Modelos Moleculares , Conformação Proteica
4.
J Chem Inf Model ; 58(1): 182-193, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29195045

RESUMO

Crystal structures of the human angiotensin II type 1 receptor (AT1R) complex with the antihypertensive agent ZD7155 (PDB id: 4YAY ) and the blood pressure medication Benicar (PDB id: 4ZUD ) showed that binding poses of both antagonists are similar. This finding implies that clinically used angiotensin receptor blocking (ARB) drugs may interact in a similar fashion. However, clinically observed differences in pharmacological and therapeutic efficacies of ARBs lead to the question of whether the dynamic interactions of AT1R with ARBs vary. To address this, we performed induced-fit docking (IFD) of eight clinically used ARBs to AT1R followed by 200 ns molecular dynamic (MD) simulation. The experimental Ki values for ARBs correlated remarkably well with calculated free energy with R2 = 0.95 and 0.70 for AT1R-ARB models generated respectively by IFD and MD simulation. The eight ARB-AT1R complexes share a common set of binding residues. In addition, MD simulation results validated by mutagenesis data discovered distinctive spatiotemporal interactions that display unique bonding between an individual ARB and AT1R. These findings provide a reasonably broader picture reconciling the structure-based observations with clinical studies reporting efficacy variations for ARBs. The unique differences unraveled for ARBs in this study will be useful for structure-based design of the next generation of more potent and selective ARBs.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Desenho de Fármacos , Receptor Tipo 1 de Angiotensina/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/genética , Análise Espaço-Temporal
5.
Acta Pharmacol Sin ; 34(12): 1592-606, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24304920

RESUMO

AIM: Both endothelin ETA receptor antagonists and angiotensin AT1 receptor antagonists lower blood pressure in hypertensive patients. A dual AT1 and ETA receptor antagonist may be more efficacious antihypertensive drug. In this study we identified the mode and mechanism of binding of imidazole series of compounds as dual AT1 and ETA receptor antagonists. METHODS: Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and structural basis of the inhibitory activity. Pharmacophore-based virtual screening and docking studies were performed to identify more potent dual antagonists. RESULTS: 3D-QSAR models of the imidazole compounds were developed from the conformer generated by QPLD, and the resulting models showed a good correlation between the predicted and experimental activity. The visualization of the 3D-QSAR model in the context of the compounds under study revealed the details of the structure-activity relationship: substitution of methoxymethyl and cyclooctanone might increase the activity against AT1 receptor, while substitution of cyclohexone and trimethylpyrrolidinone was important for the activity against ETA receptor; addition of a trimethylpyrrolidinone to compound 9 significantly reduced its activity against AT1 receptor but significantly increased its activity against ETA receptor, which was likely due to the larger size and higher intensities of the H-bond donor and acceptor regions in the active site of ETA receptor. Pharmacophore-based virtual screening followed by subsequent Glide SP, XP, QPLD and MM/GBSA calculation identified 5 potential lead compounds that might act as dual AT1 and ETA receptor antagonists. CONCLUSION: This study may provide some insights into the development of novel potent dual ETA and AT1 receptor antagonists. As a result, five compounds are found to be the best dual antagonists against AT1R and ETA receptors.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antagonistas do Receptor de Endotelina A , Imidazóis/metabolismo , Teoria Quântica , Sequência de Aminoácidos , Humanos , Imidazóis/química , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Homologia de Sequência de Aminoácidos
6.
Hypertension ; 80(2): 385-402, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36440576

RESUMO

BACKGROUND: Aortic aneurysm (AA) is a "silent killer" human disease with no effective treatment. Although the therapeutic potential of various pharmacological agents have been evaluated, there are no reports of ß-arrestin-biased AT1R (angiotensin-II type-1 receptor) agonist (TRV027) used to prevent the progression of AA. METHODS: We tested the hypothesis that TRV027 infusion in AngII (angiotensin II)-induced mouse model of AA prevents AA. High-fat-diet-fed ApoE (apolipoprotein E gene)-null mice were infused with AngII to induce AA and co-infused with TRV027 and a clinically used AT1R blocker Olmesartan to prevent AA. Aortas explanted from different ligand infusion groups were compared with assess different grades of AA or lack of AA. RESULTS: AngII produced AA in ≈67% male mice with significant mortality associated with AA rupture. We observed ≈13% mortality due to aortic arch dissection without aneurysm in male mice. AngII-induced AA and mortality was prevented by co-infusion of TRV027 or Olmesartan, but through different mechanisms. In TRV027 co-infused mice aortic wall thickness, elastin content, new DNA, and protein synthesis were higher than untreated and Olmesartan co-infused mice. Co-infusion with both TRV027 and Olmesartan prevented endoplasmic reticulum stress, fibrosis, and vasomotor hyper responsiveness. CONCLUSIONS: TRV027-engaged AT1R prevented AA and associated mortality by distinct molecular mechanisms compared with the AT1R blocker, Olmesartan. Developing novel ß-arrestin-biased AT1R ligands may yield promising drugs to combat AA.


Assuntos
Aneurisma Aórtico , Animais , Feminino , Masculino , Camundongos , Angiotensina II/farmacologia , Aorta/metabolismo , beta-Arrestinas , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/metabolismo
7.
Br J Pharmacol ; 179(18): 4461-4472, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35318654

RESUMO

Functional advances have guided our knowledge of physiological and fatal pathological mechanisms of the hormone angiotensin II (AngII) and its antagonists. Such studies revealed that tissue response to a given dose of the hormone or its antagonist depends on receptors that engage the ligand. Thus, we need to know much more about the structures of receptor-ligand complexes at high resolution. Recently, X-ray structures of both AngII receptors (AT1 and AT2 receptors) bound to peptide and non-peptide ligands have been elucidated, providing new opportunities to examine the dynamic fluxes in the 3D architecture of the receptors, as the basis of ligand selectivity, efficacy, and regulation of the molecular functions of the receptors. Constituent structural motifs cooperatively transform ligand selectivity into specific functions, thus conceptualizing the primacy of the 3D structure over individual motifs of receptors. This review covers the new data elucidating the structural dynamics of AngII receptors and how structural knowledge can be transformative in understanding the mechanisms underlying the physiology of AngII.


Assuntos
Angiotensina II , Receptor Tipo 1 de Angiotensina , Angiotensina II/farmacologia , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina
8.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529832

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
9.
Curr Drug Targets ; 21(2): 125-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31433752

RESUMO

Homeostasis in the cardiovascular system is maintained by physiological functions of the Renin Angiotensin Aldosterone System (RAAS). In pathophysiological conditions, over activation of RAAS leads to an increase in the concentration of Angiotensin II (AngII) and over activation of Angiotensin Type 1 Receptor (AT1R), resulting in vasoconstriction, sodium retention and change in myocyte growth. It causes cardiac remodeling in the heart which results in left ventricular hypertrophy, dilation and dysfunction, eventually leading to Heart Failure (HF). Inhibition of RAAS using angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) has shown to significantly reduce morbidity and mortality due to HF. ACEi have been shown to have higher drug withdrawal rates due to discomfort when compared to ARBs; therefore, ARBs are the preferred choice of physicians for the treatment of HF in combination with other anti-hypertensive agents. Currently, eight ARBs have been approved by FDA and are clinically used. Even though they bind to the same site of AT1R displacing AngII binding but clinical outcomes are significantly different. In this review, we described the clinical significance of each ARB in the treatment of HF and their clinical outcome.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Humanos , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Resultado do Tratamento
10.
Methods Cell Biol ; 149: 215-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30616822

RESUMO

Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.


Assuntos
Pressão Sanguínea/fisiologia , Vasos Sanguíneos/fisiologia , Homeostase , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligantes , Camundongos , Receptor Tipo 1 de Angiotensina/metabolismo
11.
Br J Pharmacol ; 174(9): 737-753, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28194766

RESUMO

Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.


Assuntos
Angiotensina I/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Humanos , Ligação Proteica/fisiologia , Proto-Oncogene Mas , Transdução de Sinais/fisiologia
12.
J Cell Signal ; 1(2)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27512731

RESUMO

Angiotensinogen - a serpin family protein predominantly produced by the liver is systematically processed by proteases of the Renin Angiotensin system (RAS) generating hormone peptides. Specific cell surface receptors for at least three distinct angiotensin peptides produce distinct cellular signals that regulate system-wide physiological response to RAS. Two well characterized receptors are angiotensin type 1 receptor (AT1 receptor) and type 2 receptor (AT2 receptor). They respond to the octapeptide hormone angiotensin II. The oncogene product MAS is a putative receptor for Ang (1-7). While these are G-protein coupled receptors (GPCRs), the in vivo angiotensin IV binding sites may be type 2 transmembrane proteins. These four receptors together regulate cardiovascular, hemodynamic, neurological, renal, and endothelial functions; as well as cell proliferation, survival, matrix-cell interactions and inflammation. Angiotensin receptors are important therapeutic targets for several diseases. Thus, researchers and pharmaceutical companies are focusing on drugs targeting AT1 receptor than AT2 receptor, MAS and AngIV binding sites. AT1 receptor blockers are the cornerstone of current treatment for hypertension, heart failure, renal failure and many types of vascular diseases including atherosclerosis, aortic aneurism and Marfan syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA