Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727972

RESUMO

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Assuntos
Perda Auditiva Neurossensorial , Receptor Notch2 , Receptores de Superfície Celular , Animais , Perda Auditiva Neurossensorial/genética , Humanos , Mutação com Perda de Função , Camundongos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Superfície Celular/genética , Estereocílios/metabolismo
2.
Biochem Biophys Res Commun ; 594: 63-68, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35074587

RESUMO

High temperature requirement protease A2 (HtrA2) is a mitochondrial serine protease that demonstrates multifaceted roles including protein quality control and proapoptotic properties in humans, making it a potential therapeutic target. Current literature suggests involvement of flexible regulatory loops in governing the allosteric propagation within the trimeric HtrA2 ensemble. Here, we have identified three important residues - R147, P148 (L3 loop) and F131 (LD loop) surrounding the catalytic-site that play crucial roles in stabilizing HtrA2 active conformation during its multimodal activation. Although mutagenesis of these residues does not affect the structural integrity, it renders the protease inactive by affecting the regulatory inter-subunit PDZ-protease crosstalk. This is further emphasized by the inactivity observed during N-terminal mediated activation of the HtrA2 loop mutants via BIR2 domain of the antiapoptotic protein XIAP. Overall, our results demonstrate the importance of L3 loop dynamics in mediating the inter-molecular allostery via R147-P148 residues. Understanding the on-off switch that regulates HtrA2 activation might help in designing HtrA2 modulators for therapeutic applications.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Sítio Alostérico , Domínio Catalítico , Simulação por Computador , Sequência Conservada , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Espectrometria de Fluorescência , Temperatura
3.
J Biol Chem ; 293(34): 12975-12991, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29959225

RESUMO

Parkinson's disease is mainly a sporadic disorder in which both environmental and cellular factors play a major role in the initiation of this disease. Glycosaminoglycans (GAG) are integral components of the extracellular matrix and are known to influence amyloid aggregation of several proteins, including α-synuclein (α-Syn). However, the mechanism by which different GAGs and related biological polymers influence protein aggregation and the structure and intercellular spread of these aggregates remains elusive. In this study, we used three different GAGs and related charged polymers to establish their role in α-Syn aggregation and associated biological activities of these aggregates. Heparin, a representative GAG, affected α-Syn aggregation in a concentration-dependent manner, whereas biphasic α-Syn aggregation kinetics was observed in the presence of chondroitin sulfate B. Of note, as indicated by 2D NMR analysis, different GAGs uniquely modulated α-Syn aggregation because of the diversity of their interactions with soluble α-Syn. Moreover, subtle differences in the GAG backbone structure and charge density significantly altered the properties of the resulting amyloid fibrils. Each GAG/polymer facilitated the formation of morphologically and structurally distinct α-Syn amyloids, which not only displayed variable levels of cytotoxicity but also exhibited an altered ability to internalize into cells. Our study supports the role of GAGs as key modulators in α-Syn amyloid formation, and their distinct activities may regulate amyloidogenesis depending on the type of GAG being up- or down-regulated in vivo.


Assuntos
Amiloide/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Polímeros/química , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , Proliferação de Células , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Células Tumorais Cultivadas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Luminescence ; 34(8): 804-811, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31273930

RESUMO

Dy3+ -doped CaAl12 O19 phosphors were synthesized utilizing a combustion method. Crystal structure and morphological examinations were performed respectively using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques to identify the phase and morphology of the synthesized samples. Fourier transform infrared spectroscopy (FTIR) estimations were carried out using the KBr method. Photoluminescence properties (excitation and emission) were recorded at room temperature. CaAl12 O19 :Dy3+ phosphor showed two emission peaks respectively under a 350-nm excitation wavelength, centered at 477 nm and 573 nm. Dipole-dipole interaction via nonradiative energy shifting has been considered as the major cause of concentration quenching when Dy3+ concentration was more than 3 mol%. The CIE chromaticity coordinates positioned at (0.3185, 0.3580) for the CaAl12 O19 :0.03Dy3+ phosphor had a correlated color temperature (CCT) of 6057 K, which is situated in the cool white area. Existing results point out that the CaAl12 O19 :0.03Dy3+ phosphor could be a favorable candidate for use in white light-emitting diodes (WLEDs).


Assuntos
Alumínio/química , Cálcio/química , Disprósio/química , Luz , Luminescência , Substâncias Luminescentes/química , Oxigênio/química , Tamanho da Partícula , Espectrometria de Fluorescência
5.
Biochemistry ; 57(35): 5183-5187, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29771508

RESUMO

The involvement of α-synuclein (α-Syn) amyloid formation in Parkinson's disease (PD) pathogenesis is supported by the discovery of α-Syn gene (SNCA) mutations linked with familial PD, which are known to modulate the oligomerization and aggregation of α-Syn. Recently, the A53V mutation has been discovered, which leads to late-onset PD. In this study, we characterized for the first time the biophysical properties of A53V, including the aggregation propensities, toxicity of aggregated species, and membrane binding capability, along with those of all familial mutations at the A53 position. Our data suggest that the A53V mutation accelerates fibrillation of α-Syn without affecting the overall morphology or cytotoxicity of fibrils compared to those of the wild-type (WT) protein. The aggregation propensity for A53 mutants is found to decrease in the following order: A53T > A53V > WT > A53E. In addition, a time course aggregation study reveals that the A53V mutant promotes early oligomerization similar to the case for the A53T mutation. It promotes the largest amount of oligomer formation immediately after dissolution, which is cytotoxic. Although in the presence of membrane-mimicking environments, the A53V mutation showed an extent of helix induction capacity similar to that of the WT protein, it exhibited less binding to lipid vesicles. The nuclear magnetic resonance study revealed unique chemical shift perturbations caused by the A53V mutation compared to those caused by other mutations at the A53 site. This study might help to establish the disease-causing mechanism of A53V in PD pathology.


Assuntos
Amiloide/química , Membrana Celular/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Agregados Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Humanos , Cinética , Proteínas Mutantes/genética , alfa-Sinucleína/genética
7.
FASEB J ; 30(1): 186-200, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26370846

RESUMO

Assembly of a death-inducing signaling complex is a key event in the extrinsic apoptotic pathway, enabling activation of the caspase cascade and subsequent cell death. However, the molecular events governing DISC assembly have remained largely elusive because of the lack of information on mechanism and specificity regulating the death effector domain (DED)-DED interaction network. Using molecular modeling, mutagenesis, and biochemical and ex vivo experiments, we identified the precise binding interface and hot spots crucial for intermolecular DED chain assembly. Mutation of key interface residues (Leu42/Phe45) in procaspase-8 DED-A completely abrogated DED chain formation in HEK293 cells and prevented its association with FADD. A significant 2.6-3.6-fold reduction in procaspase-8 activation was observed in functional cell-death assays after substitution of the interfacial residues. Based on our results we propose a new model for DISC formation that refines the current understanding of the activation mechanism. Upon stimulation, FADD self-associates weakly via reciprocal interaction between helices α1/α4 and α2/α3 of the DED to form an oligomeric signaling platform that provides a stage for the initial recruitment of procaspase-8 through direct interaction with α1/α4 of DED-A, followed by sequential interaction mediated by helices α2/α5 of DED-B, to form the procaspase-8 DED chain that is crucial for its activation and subsequent cell death.


Assuntos
Apoptose/fisiologia , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia
8.
Biochem Biophys Res Commun ; 463(4): 496-503, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26091566

RESUMO

Papillomavirus E2 protein that performs essential functions such as viral oncogene expression and replication represents specific target for therapeutic intervention. DNA-binding activity is associated with its C-terminal DNA-binding domain (DBD), while the N-terminal transactivation domain (TAD) is responsible for replication and transactivation functions. Although both demonstrate large dependence on dimerization for mediating their functions, KD for N-terminal dimerization is significantly high suggesting more dynamic role of this domain. However, unlike DBD, very little information is available on TAD dimerization, its folding and stability. Therefore, with an aim at delineating the regulatory switch of its dimerization, we have characterized high-risk HPV18 E2 TAD. Our studies demonstrate that E2 TAD is a weak but thermodynamically stable dimer (KD âˆ¼ 1.8 µM, [Formula: see text]  = 18.8 kcal mol(-1)) with α2-α3 helices forming the interface. It follows a three-state folding pathway, in which unfolding involves dissociation of a dimeric intermediate. Interestingly, 90% of the conformational free energy is associated with dimer dissociation (16.9 of 18.8 kcal mol(-1)) suggesting dimerization significantly contributes to its overall thermodynamic stability. These revelations might be important toward designing inhibitors for targeting dimerization or folding intermediates and hence multiple functions that E2 performs.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Oncogênicas Virais/química , Desdobramento de Proteína , Ativação Transcricional , Dicroísmo Circular , Proteínas de Ligação a DNA/genética , Dimerização , Papillomavirus Humano 18/química , Proteínas Oncogênicas Virais/genética , Espectrometria de Fluorescência , Termodinâmica
9.
Methods Mol Biol ; 2551: 395-423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310217

RESUMO

Liquid-liquid phase separation (LLPS) acts as an important biological phenomenon in membraneless organelle formation. These phase-separated bodies can also act as nucleation centers for disease-associated amyloid formation. Fluorescence recovery after photobleaching (FRAP) is a crucial technique to analyze the material property (liquid or solid) of protein LLPS. On the other hand, Förster resonance energy transfer (FRET) is used to understand the domain-specific involvement (intermolecular interactions) of protein molecules inside the phase-separated droplets. In this protocol, we delineate mechanisms of liquid-to-solid transition of α-synuclein LLPS by using in vitro and in cell FRAP as well as in vitro FRET techniques.


Assuntos
Transferência Ressonante de Energia de Fluorescência , alfa-Sinucleína , Humanos , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Amiloide
10.
J Mol Biol ; 434(19): 167761, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907572

RESUMO

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.


Assuntos
Príons , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/química , Humanos , Corpos de Inclusão/química , Espectroscopia de Ressonância Magnética , Príons/metabolismo , alfa-Sinucleína/química
11.
Arch Biochem Biophys ; 516(2): 85-96, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22027029

RESUMO

HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Legionella/enzimologia , Legionella/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Domínios PDZ , Proteínas Periplásmicas/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Homologia Estrutural de Proteína , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
12.
Emerg Top Life Sci ; 5(1): 113-125, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33835131

RESUMO

The combinatorial space of an enzyme sequence has astronomical possibilities and exploring it with contemporary experimental techniques is arduous and often ineffective. Multi-target objectives such as concomitantly achieving improved selectivity, solubility and activity of an enzyme have narrow plausibility under approaches of restricted mutagenesis and combinatorial search. Traditional enzyme engineering approaches have a limited scope for complex optimization due to the requirement of a priori knowledge or experimental burden of screening huge protein libraries. The recent surge in high-throughput experimental methods including Next Generation Sequencing and automated screening has flooded the field of molecular biology with big-data, which requires us to re-think our concurrent approaches towards enzyme engineering. Artificial Intelligence (AI) and Machine Learning (ML) have great potential to revolutionize smart enzyme engineering without the explicit need for a complete understanding of the underlying molecular system. Here, we portray the role and position of AI techniques in the field of enzyme engineering along with their scope and limitations. In addition, we explain how the traditional approaches of directed evolution and rational design can be extended through AI tools. Recent successful examples of AI-assisted enzyme engineering projects and their deviation from traditional approaches are highlighted. A comprehensive picture of current challenges and future avenues for AI in enzyme engineering are also discussed.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Big Data , Engenharia de Proteínas
13.
Nat Chem ; 12(8): 705-716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514159

RESUMO

α-Synuclein (α-Syn) aggregation and amyloid formation is directly linked with Parkinson's disease pathogenesis. However, the early events involved in this process remain unclear. Here, using the in vitro reconstitution and cellular model, we show that liquid-liquid phase separation of α-Syn precedes its aggregation. In particular, in vitro generated α-Syn liquid-like droplets eventually undergo a liquid-to-solid transition and form an amyloid hydrogel that contains oligomers and fibrillar species. Factors known to aggravate α-Syn aggregation, such as low pH, phosphomimetic substitution and familial Parkinson's disease mutations, also promote α-Syn liquid-liquid phase separation and its subsequent maturation. We further demonstrate α-Syn liquid-droplet formation in cells. These cellular α-Syn droplets eventually transform into perinuclear aggresomes, the process regulated by microtubules. This work provides detailed insights into the phase-separation behaviour of natively unstructured α-Syn and its conversion to a disease-associated aggregated state, which is highly relevant in Parkinson's disease pathogenesis.


Assuntos
Agregados Proteicos/fisiologia , alfa-Sinucleína/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transição de Fase , Polietilenoglicóis/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Bioresour Technol ; 249: 139-145, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29040847

RESUMO

An insight into the properties of cell wall of mustard stalk (MS) pretreated by five ionic liquids (ILs) revealed ILs interaction with cellulose, hemicellulose and lignin components. Differential Scanning Calorimetry (DSC) showed increased pore size coupled with increased population of pores evoked by certain ILs in better facilitating enzymatic accessibility. Interestingly, all the five ILs predominantly increased the propensity of two pore sizes formation; 19 and 198 nm, but remarkable difference in the pore volumes of pretreated MS suggested the supremacy of [OAc]- based ILs, resulting in higher glucose yields. Cellulose I to II transition in pretreated MS was supported by the reduced total crystallinity index (TCI), lateral order index (LOI) values. Strong inverse correlation existed between the said parameters and residual acetyl content with enzymatic hydrolysis (R2 > 0.8). An inverse relationship between hydrogen bond basicity, LOI and TCI suggested it to be a good indicator of IL pretreatment efficiency.


Assuntos
Líquidos Iônicos , Células Vegetais , Biomassa , Celulase , Celulose , Hidrólise , Lignina
15.
PLoS One ; 13(7): e0200150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979738

RESUMO

INTRODUCTION: There is lack of information on the proportion of new smear-positive pulmonary tuberculosis (PTB) patients treated with a 6-month thrice-weekly regimen under Revised National Tuberculosis Control Programme (RNTCP) who develop recurrent TB after successful treatment outcome. OBJECTIVE: To estimate TB recurrence among newly diagnosed PTB patients who have successfully completed treatment and to document endogenous reactivation or re-infection. Risk factors for unfavourable outcomes to treatment and TB recurrence were determined. METHODOLOGY: Adult (aged ≥ 18 yrs) new smear positive PTB patients initiated on treatment under RNTCP were enrolled from sites in Tamil Nadu, Karnataka, Delhi, Maharashtra, Madhya Pradesh and Kerala. Those declared "treatment success" at the end of treatment were followed up with 2 sputum examinations each at 3, 6 and 12 months after treatment completion. MIRU-VNTR genotyping was done to identify endogenous re-activation or exogenous re-infection at TB recurrence. TB recurrence was expressed as rate per 100 person-years (with 95% confidence interval [95%CI]). Regression models were used to identify the risk factors for unfavourable response to treatment and TB recurrence. RESULTS: Of the1577 new smear positive PTB patients enrolled, 1565 were analysed. The overall cure rate was 77% (1207/1565) and treatment success was 77% (1210 /1565). The cure rate varied from 65% to 86%. There were 158 of 1210 patients who had TB recurrence after treatment success. The pooled TB recurrence estimate was 10.9% [95%CI: 0.2-21.6] and TB recurrence rate per 100 person-years was 12.7 [95% CI: 0.4-25]. TB recurrence per 100 person-years varied from 5.4 to 30.5. Endogenous reactivation was observed in 56 (93%) of 60 patients for whom genotyping was done. Male gender was associated with TB recurrence. CONCLUSION: A substantial proportion of new smear positive PTB patients successfully treated with 6 -month thrice-weekly regimen have TB recurrence under program settings.


Assuntos
Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/administração & dosagem , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Programas Nacionais de Saúde , Estudos Prospectivos , Recidiva , Fatores de Risco , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
16.
Quintessence Int ; 48(4): 295-308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27834422

RESUMO

OBJECTIVE: To compare the thickness of buccal bone around single dental implants placed in the anterior maxilla (premolar to premolar) inserted with different placement protocols. DATA SOURCES: An electronic search was conducted using MEDLINE (PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE, from January 1980 to July 2015. Mean buccal bone thickness around single dental implants was measured and correlation with implant placement protocols, loading protocols, and augmentation method was assessed. A Q-test was used to access the homogeneity of levels of effect. A univariate meta-regression analysis was used for further investigation of the between-study heterogeneity. Two randomized clinical trials and 12 cohort studies were included for statistical analysis. The difference in buccal bone thickness for implants placed with different implant placement protocols (early vs immediate vs delayed) was not statistically significant (P > .05). Loading protocols (immediate vs delayed) also did not significantly influence the thickness of buccal bone. Descriptive analysis showed different buccal bone thickness for dental implants that received different bone grafting materials at the time of placement. CONCLUSION: Different implant placement and loading protocols may not significantly affect the thickness of the buccal bone around single dental implants in the anterior maxilla. Different bone graft materials at the time of implant placement may have an effect on buccal bone thickness.


Assuntos
Interface Osso-Implante/anatomia & histologia , Implantação Dentária Endóssea/métodos , Implantes Dentários para Um Único Dente , Estética Dentária , Maxila/anatomia & histologia , Maxila/cirurgia , Substitutos Ósseos , Transplante Ósseo/métodos , Humanos
17.
Sci Rep ; 6: 21408, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26906543

RESUMO

High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis.


Assuntos
Apoptose , Caspase 8/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas Oncogênicas Virais/fisiologia , Sítios de Ligação , Caspase 8/química , Fragmentação do DNA , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Oncogênicas Virais/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
18.
FEBS J ; 281(10): 2456-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24698088

RESUMO

High-temperature requirement protease A2 (HtrA2), a multitasking serine protease that is involved in critical biological functions and pathogenicity, such as apoptosis and cancer, is a potent therapeutic target. It is established that the C-terminal post-synaptic density protein, Drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) domain of HtrA2 plays pivotal role in allosteric modulation, substrate binding and activation, as commonly reported in other members of this family. Interestingly, HtrA2 exhibits an additional level of functional modulation through its unique N-terminus, as is evident from 'inhibitor of apoptosis proteins' binding and cleavage. This phenomenon emphasizes multiple activation mechanisms, which so far remain elusive. Using conformational dynamics, binding kinetics and enzymology studies, we addressed this complex behavior with respect to defining its global mode of regulation and activity. Our findings distinctly demonstrate a novel N-terminal ligand-mediated triggering of an allosteric switch essential for transforming HtrA2 to a proteolytically competent state in a PDZ-independent yet synergistic activation process. Dynamic analyses suggested that it occurs through a series of coordinated structural reorganizations at distal regulatory loops (L3, LD, L1), leading to a population shift towards the relaxed conformer. This precise synergistic coordination among different domains might be physiologically relevant to enable tighter control upon HtrA2 activation for fostering its diverse cellular functions. Understanding this complex rheostatic dual switch mechanism offers an opportunity for targeting various disease conditions with tailored site-specific effector molecules.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Regulação Alostérica , Animais , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativação Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Cinética , Ligantes , Proteínas Mitocondriais/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios PDZ , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
19.
PLoS One ; 8(2): e55416, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457469

RESUMO

HtrA2, a trimeric proapoptotic serine protease is involved in several diseases including cancer and neurodegenerative disorders. Its unique ability to mediate apoptosis via multiple pathways makes it an important therapeutic target. In HtrA2, C-terminal PDZ domain upon substrate binding regulates its functions through coordinated conformational changes the mechanism of which is yet to be elucidated. Although allostery has been found in some of its homologs, it has not been characterized in HtrA2 so far. Here, with an in silico and biochemical approach we have shown that allostery does regulate HtrA2 activity. Our studies identified a novel non-canonical selective binding pocket in HtrA2 which initiates signal propagation to the distal active site through a complex allosteric mechanism. This non-classical binding pocket is unique among HtrA family proteins and thus unfolds a novel mechanism of regulation of HtrA2 activity and hence apoptosis.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Modelos Moleculares , Domínios PDZ , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA