Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 324(1): H155-H171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459446

RESUMO

On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.


Assuntos
Células Endoteliais , Vasos Linfáticos , Ratos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Inflamação/metabolismo , Radiação Ionizante , Edema/metabolismo
2.
Clin Sci (Lond) ; 137(16): 1285-1296, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565514

RESUMO

A solitary functioning kidney (SFK) from birth predisposes to hypertension and kidney dysfunction, and this may be associated with impaired fluid and sodium homeostasis. Brief and early angiotensin-converting enzyme inhibition (ACEi) in a sheep model of SFK delays onset of kidney dysfunction. We hypothesized that modulation of the renin-angiotensin system via brief postnatal ACEi in SFK would reprogram renal sodium and water handling. Here, blood pressure (BP), kidney haemodynamics and kidney excretory function were examined in response to an isotonic saline load (0.13 ml/kg/min, 180 min) at 20 months of age in SFK (fetal unilateral nephrectomy at 100 days gestation; term 150 days), sham and SFK+ACEi sheep (ACEi in SFK 4-8 weeks of age). Basal BP was higher in SFK than sham (∼13 mmHg), and similar between SFK and SFK+ACEi groups. Saline loading caused a small increase in BP (∼3-4 mmHg) the first 2 h in SFK and sham sheep but not SFK+ACEi sheep. Glomerular filtration rate did not change in response to saline loading. Total sodium excretion was similar between groups. Total urine excretion was similar between SFK and sham animals but was ∼40% less in SFK+ACEi animals compared with SFK animals. In conclusion, the present study indicates that water homeostasis in response to a physiological challenge is attenuated at 20 months of age by brief early life ACEi in SFK. Further studies are required to determine if ACEi in early life in children with SFK could compromise fluid homeostasis later in life.


Assuntos
Rim Único , Animais , Ovinos , Diuréticos , Rim , Sódio , Água , Angiotensinas , Taxa de Filtração Glomerular
3.
Clin Sci (Lond) ; 137(8): 603-615, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37018071

RESUMO

A child with a congenital solitary functioning kidney (SFK) may develop kidney disease from early in life due to hyperfiltration injury. Previously, we showed in a sheep model of SFK that brief angiotensin-converting enzyme inhibition (ACEi) early in life is reno-protective and increases renal functional reserve (RFR) at 8 months of age. Here we investigated the long-term effects of brief early ACEi in SFK sheep out to 20 months of age. At 100 days gestation (term = 150 days) SFK was induced by fetal unilateral nephrectomy, or sham surgery was performed (controls). SFK lambs received enalapril (SFK+ACEi; 0.5 mg/kg, once daily, orally) or vehicle (SFK) from 4 to 8 weeks of age. At 8, 14 and 20 months of age urinary albumin excretion was measured. At 20 months of age, we examined basal kidney function and RFR via infusion of combined amino acid and dopamine (AA+D). SFK+ACEi resulted in lower albuminuria (∼40%) at 8 months, but not at 14 or 20 months of age compared with vehicle-SFK. At 20 months, basal GFR (∼13%) was lower in SFK+ACEi compared with SFK, but renal blood flow (RBF), renal vascular resistance (RVR) and filtration fraction were similar to SFK. During AA+D, the increase in GFR was similar in SFK+ACEi and SFK animals, but the increase in RBF was greater (∼46%) in SFK+ACEi than SFK animals. Brief ACEi in SFK delayed kidney disease in the short-term but these effects were not sustained long-term.


Assuntos
Nefropatias , Rim Único , Animais , Ovinos , Taxa de Filtração Glomerular , Rim , Angiotensinas
4.
J Am Soc Nephrol ; 33(7): 1341-1356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351818

RESUMO

BACKGROUND: Children born with a solitary functioning kidney (SFK) are predisposed to develop hypertension and kidney injury. Glomerular hyperfiltration and hypertrophy contribute to the pathophysiology of kidney injury. Angiotensin-converting enzyme inhibition (ACEi) can mitigate hyperfiltration and may be therapeutically beneficial in reducing progression of kidney injury in those with an SFK. METHODS: SFK was induced in male sheep fetuses at 100 days gestation (term=150 days). Between 4 and 8 weeks of age, SFK lambs received enalapril (SFK+ACEi; 0.5mg/kg per day, once daily, orally) or vehicle (SFK). At 8 months, we examined BP, basal kidney function, renal functional reserve (RFR; GFR response to combined amino acid and dopamine infusion), GFR response to nitric oxide synthase (NOS) inhibition, and basal nitric oxide (NO) bioavailability (basal urinary total nitrate and nitrite [NOx]). RESULTS: SFK+ACEi prevented albuminuria and resulted in lower basal GFR (16%), higher renal blood flow (approximately 22%), and lower filtration fraction (approximately 35%), but similar BP, compared with vehicle-treated SFK sheep. Together with greater recruitment of RFR (approximately 14%) in SFK+ACEi than SFK animals, this indicates a reduction in glomerular hyperfiltration-mediated kidney dysfunction. During NOS inhibition, the decrease in GFR (approximately 14%) was greater among SFK+ACEi than among SFK animals. Increased (approximately 85%) basal urinary total NOx in SFK+ACEi compared with SFK animals indicates elevated NO bioavailability likely contributed to improvements in kidney function and prevention of albuminuria. CONCLUSIONS: Brief and early ACEi in SFK is associated with reduced glomerular hyperfiltration-mediated kidney disease up to 8 months of age in a sheep model.


Assuntos
Nefropatias , Rim Único , Albuminúria , Angiotensinas , Animais , Taxa de Filtração Glomerular , Rim , Nefropatias/etiologia , Nefropatias/prevenção & controle , Masculino , Óxido Nítrico , Ovinos
5.
Hum Mutat ; 42(8): 1015-1029, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082469

RESUMO

Mutations in ALDH3A2 cause Sjögren-Larsson syndrome (SLS), a neuro-ichthyotic condition due to the deficiency of fatty aldehyde dehydrogenase (FALDH). We screened for novel mutations causing SLS among Indian ethnicity, characterized the identified mutations in silico and in vitro, and retrospectively evaluated their role in phenotypic heterogeneity. Interestingly, asymmetric distribution of nonclassical traits was observed in our cases. Nerve conduction studies suggested intrinsic-minus-claw hands in two siblings, a novel neurological phenotype to SLS. Genetic testing revealed five novel homozygous ALDH3A2 mutations in six cases: Case-1-NM_000382.2:c.50C>A, NP_000373.1:p.(Ser17Ter); Case-2-NM_000382.2:c.199G>T, NP_000373.1:p.(Glu67Ter); Case-3-NM_000382.2:c.1208G>A, NP_000373.1:p.(Gly403Asp); Case-4-NM_000382.2:c.1325C>T, NP_000373.1:p.(Pro442Leu); Case-5 and -6 NM_000382.2:c.1349G>A, NP_000373.1:p.(Trp450Ter). The mutations identified were predicted to be pathogenic and disrupt the functional domains of the FALDH. p.(Pro442Leu) at the C-terminal α-helix, might impair the substrate gating process. Mammalian expression studies with exon-9 mutants confirmed the profound reduction in the enzyme activity. Diminished aldehyde-oxidizing activity was observed with cases-2 and 3. Cases-2 and 3 showed epidermal hyperplasia with mild intracellular edema, spongiosis, hypergranulosis, and perivascular-interstitial lymphocytic infiltrate and a leaky eosinophilic epidermis. The presence of keratin-containing milia-like lipid vacuoles implies defective lamellar secretion with p.(Gly403Asp). This study improves our understanding of the clinical and mutational diversity in SLS, which might help to fast-track diagnostic and therapeutic interventions of this debilitating disorder.


Assuntos
Aldeído Oxirredutases , Síndrome de Sjogren-Larsson , Aldeído Oxirredutases/genética , Animais , Humanos , Mamíferos/metabolismo , Mutação , Fenótipo , Estudos Retrospectivos , Síndrome de Sjogren-Larsson/genética , Síndrome de Sjogren-Larsson/patologia
6.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R319-R327, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166691

RESUMO

Catheter-based renal denervation (RDN) was introduced as a treatment for resistant hypertension. There remain critical questions regarding the physiological mechanisms underlying the hypotensive effects of catheter-based RDN. Previous studies indicate that surgical denervation reduces renin and the natriuretic response to saline loading; however, the effects on these variables of catheter-based RDN, which does not yield complete denervation, are largely unknown. The aim of this study was to investigate the effects of catheter-based RDN on glomerular-associated renin and regulation of fluid and sodium homeostasis in response to physiological challenges. First, immunohistochemical staining for renin was performed in normotensive sheep (n = 6) and sheep at 1 wk (n = 6), 5.5 mo (n = 5), and 11 mo (n = 5) after unilateral RDN using the same catheter used in patients (Symplicity). Following catheter-based RDN (1 wk), renin-positive glomeruli were significantly reduced compared with sham animals (P < 0.005). This was sustained until 5.5 mo postdenervation. To determine whether the reduction in renin after 1 wk had physiological effects, in a separate cohort, Merino ewes were administered high and low saline loads before and 1 wk after bilateral RDN (n = 9) or sham procedure (n = 8). After RDN (1 wk), the diuretic response to a low saline load was significantly reduced (P < 0.05), and both the diuretic and natriuretic responses to a high saline load were significantly attenuated (P < 0.05). In conclusion, these findings indicate that catheter-based RDN acutely alters the ability of the kidney to regulate fluid and electrolyte balance. Further studies are required to determine the long-term effects of catheter-based RDN on renal sodium and water homeostasis.


Assuntos
Catéteres , Diuréticos/farmacologia , Rim/metabolismo , Sódio/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Catéteres/efeitos adversos , Denervação/métodos , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/fisiopatologia , Artéria Renal/fisiopatologia , Renina/metabolismo , Ovinos
7.
J Physiol ; 596(23): 5873-5889, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29676801

RESUMO

KEY POINTS: In the present study, we investigated whether hypoxia during late pregnancy impairs kidney development in mouse offspring, and also whether this has long-lasting consequences affecting kidney function in adulthood. Hypoxia disrupted growth of the kidney, particularly the collecting duct network, in juvenile male offspring. By mid-late adulthood, these mice developed early signs of kidney disease, notably a compromised response to water deprivation. Female offspring showed no obvious signs of impaired kidney development and did not develop kidney disease, suggesting an underlying protection mechanism from the hypoxia insult. These results help us better understand the long-lasting impact of gestational hypoxia on kidney development and the increased risk of chronic kidney disease. ABSTRACT: Prenatal hypoxia is a common perturbation to arise during pregnancy, and can lead to adverse health outcomes in later life. The long-lasting impact of prenatal hypoxia on postnatal kidney development and maturation of the renal tubules, particularly the collecting duct system, is relatively unknown. In the present study, we used a model of moderate chronic maternal hypoxia throughout late gestation (12% O2 exposure from embryonic day 14.5 until birth). Histological analyses revealed marked changes in the tubular architecture of male hypoxia-exposed neonates as early as postnatal day 7, with disrupted medullary development and altered expression of Ctnnb1 and Crabp2 (encoding a retinoic acid binding protein). Kidneys of the RARElacZ line offspring exposed to hypoxia showed reduced ß-galactosidase activity, indicating reduced retinoic acid-directed transcriptional activation. Wild-type male mice exposed to hypoxia had an early decline in urine concentrating capacity, evident at 4 months of age. At 12 months of age, hypoxia-exposed male mice displayed a compromised response to a water deprivation challenge, which was was correlated with an altered cellular composition of the collecting duct and diminished expression of aquaporin 2. There were no differences in the tubular structures or urine concentrating capacity between the control and hypoxia-exposed female offspring at any age. The findings of the present study suggest that prenatal hypoxia selectively disrupts collecting duct patterning through altered Wnt/ß-catenin and retinoic acid signalling and this results in impaired function in male mouse offspring in later life.


Assuntos
Hipóxia Fetal/fisiopatologia , Túbulos Renais Coletores/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Túbulos Renais Coletores/anatomia & histologia , Túbulos Renais Coletores/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Fatores Sexuais
8.
J Physiol ; 594(5): 1451-63, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456386

RESUMO

Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes.


Assuntos
Endotélio Vascular/patologia , Hipóxia Fetal/complicações , Cloreto de Sódio na Dieta/efeitos adversos , Doenças Vasculares/etiologia , Rigidez Vascular , Animais , Endotélio Vascular/fisiopatologia , Feminino , Masculino , Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , Camundongos , Gravidez
9.
Circulation ; 131(3): 280-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25369804

RESUMO

BACKGROUND: Children born with reduced congenital renal mass have an increased risk of hypertension and chronic kidney disease in adulthood, although the mechanisms are poorly understood. Similar sequelae occur after fetal uninephrectomy (uni-x) in sheep, leading to a 30% nephron deficit. We hypothesized that renal dysfunction is underpinned by a reduced contribution of nitric oxide (NO) and vascular dysfunction in uni-x sheep. METHODS AND RESULTS: In 5-year-old female uni-x and sham sheep, mean arterial pressure, glomerular filtration rate, and renal blood flow were measured before and during NO inhibition (N(ω)-nitro-l-arginine methyl ester [L-NAME]). Reactivity was assessed in resistance arteries, including renal lobar and arcuate arteries. Basal mean arterial pressure was 15 mm Hg higher and glomerular filtration rate and renal blood flow were ≈30% lower (P<0.001) in uni-x animals. L-NAME increased mean arterial pressure by ≈17 mm Hg in both groups, whereas glomerular filtration rate and renal blood flow were decreased less in uni-x sheep (PInteraction<0.01). Endothelial NO synthase and Ser-1177-phosphorylated endothelial NO synthase protein levels were upregulated in renal cortex of uni-x sheep (P<0.05). Lobar arteries of uni-x sheep had enhanced responsiveness to phenylephrine and nitrotyrosine staining and reduced sensitivity to endothelial stimulation. Vasodilator prostanoid contribution to endothelium-dependent relaxation was reduced in lobar arteries of uni-x sheep, accompanied by reduced cyclooxygenase-1 and -2 gene expression (P<0.05). Neurovascular constriction was enhanced ≈1.5-fold in renal arteries of uni-x sheep (P<0.05). CONCLUSIONS: Renal dysfunction after congenital renal mass reduction is associated with impaired regulation of renal hemodynamics by NO. Reductions in renal blood flow and glomerular filtration rate are underpinned by impaired basal NO contribution, endothelial dysfunction, and enhanced vascular responsiveness to sympathetic nerve stimulation.


Assuntos
Nefropatias/metabolismo , Nefropatias/patologia , Rim/anormalidades , Óxido Nítrico/metabolismo , Vasoconstrição/fisiologia , Animais , Feminino , Rim/fisiologia , Rim/cirurgia , Nefropatias/cirurgia , Óxido Nítrico/antagonistas & inibidores , Estresse Oxidativo/fisiologia , Ovinos
10.
Am J Physiol Renal Physiol ; 311(5): F976-F983, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654893

RESUMO

The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype.


Assuntos
Envelhecimento/fisiologia , Imuno-Histoquímica/métodos , Rim/anatomia & histologia , Néfrons/anatomia & histologia , Fatores Etários , Animais , Aquaporina 1/metabolismo , Aquaporina 2/metabolismo , Rim/metabolismo , Camundongos , Néfrons/metabolismo , Uromodulina/metabolismo
11.
Am J Physiol Renal Physiol ; 308(10): F1065-73, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25715988

RESUMO

Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 µg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls (P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT (P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.


Assuntos
Albuminúria/induzido quimicamente , Corticosterona/efeitos adversos , Hipotensão/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Restrição Física/efeitos adversos , Estresse Psicológico/complicações , Taquicardia/induzido quimicamente , Fatores Etários , Albuminúria/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Corticosterona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipotensão/fisiopatologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Restrição Física/fisiologia , Fatores Sexuais , Estresse Psicológico/fisiopatologia , Taquicardia/fisiopatologia
12.
Kidney Int ; 87(5): 975-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25587709

RESUMO

Gestational stressors, including glucocorticoids and protein restriction, can affect kidney development and hence final nephron number. Since hypoxia is a common insult during pregnancy, we studied the influence of oxygen tension on kidney development in models designed to represent a pathological hypoxic insult. In vivo mouse models of moderate, transient, midgestational (12% O2, 48 h, 12.5 dpc) or severe, acute, early-gestational (5.5-7.5% O2, 8 h, 9.5-10.5 dpc) hypoxia were developed. The embryo itself is known to mature under hypoxic conditions with embryonic tissue levels of oxygen estimated to be 5%-8% (physiological hypoxia) when the mother is exposed to ambient normoxia. Both in vivo models generated phenotypes seen in patients with congenital anomalies of the kidney and urinary tract (CAKUT). Severe, acute, early hypoxia resulted in duplex kidney, while moderate, transient, midgestational hypoxia permanently reduced ureteric branching and nephron formation. Both models displayed hypoxia-induced reductions in ß-catenin signaling within the ureteric tree and suppression of the downstream target gene, Ccnd1. Thus, we show a link between gestational hypoxia and CAKUT, the phenotype of which varies with timing, duration, and severity of the hypoxic insult.


Assuntos
Hipóxia Fetal/complicações , Rim/anormalidades , Ureter/metabolismo , Anormalidades Urogenitais/etiologia , beta Catenina/metabolismo , Animais , Feminino , Hipóxia Fetal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Transgênicos , Gravidez , Anormalidades Urogenitais/metabolismo
13.
Am J Physiol Renal Physiol ; 306(8): F791-800, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24500691

RESUMO

Epidemiological studies reveal that children born with a solitary functioning kidney (SFK) have a greater predisposition to develop renal insufficiency and hypertension in early adulthood. A congenital SFK is present in patients with unilateral renal agenesis or unilateral multicystic kidney dysplasia, leading to both structural and functional adaptations in the remaining kidney, which act to mitigate the reductions in glomerular filtration rate and sodium excretion that would otherwise ensue. To understand the mechanisms underlying the early development of renal insufficiency in children born with a SFK, we established a model of fetal uninephrectomy (uni-x) in sheep, a species that similar to humans complete nephrogenesis before birth. This model results in a 30% reduction in nephron number rather than 50%, due to compensatory nephrogenesis in the remaining kidney. Similar to children with a congenital SFK, uni-x sheep demonstrate a progressive increase in arterial pressure and a loss of renal function with aging. This review summarizes the compensatory changes in renal hemodynamics and tubular sodium handling that drive impairments in renal function and highlights the existence of sex differences in the functional adaptations following the loss of a kidney during fetal life.


Assuntos
Rim/anormalidades , Rim/embriologia , Anormalidades Urogenitais/fisiopatologia , Adulto , Envelhecimento , Animais , Criança , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertensão/etiologia , Lactente , Rim/fisiopatologia , Capacidade de Concentração Renal/fisiologia , Nefropatias/fisiopatologia , Neoplasias Renais/cirurgia , Transplante de Rim/efeitos adversos , Masculino , Modelos Animais , Nefrectomia/efeitos adversos , Néfrons/embriologia , Óxido Nítrico/fisiologia , Ratos , Fatores Sexuais , Ovinos/cirurgia , Tumor de Wilms/cirurgia
14.
Nephrology (Carlton) ; 19(3): 119-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24533732

RESUMO

Compensatory renal growth is a characteristic adaptation to reduced renal mass that appears to recapitulate the normal pattern of maturation of the kidney during the postnatal period. Hypertrophy of tubules (predominantly the proximal tubule) and glomeruli is accompanied by increased single nephron glomerular filtration rate and tubular reabsorption of sodium. We propose that the very factors, which contribute to the increase in growth and function of the renal tubular system, are, in the long term, the precursors to the development of hypertension in those with a nephron deficit. The increase in single nephron glomerular filtration rate is dependent on multiple factors, including reduced renal vascular resistance associated with an increased influence of nitric oxide, and a rightward shift in the tubuloglomerular feedback curve, both of which contribute to the normal maturation of renal function. The increased influence of nitric oxide appears to contribute to the reduction in tubuloglomerular feedback sensitivity and facilitate the initial increase in glomerular filtration rate. The increased single-nephron filtered load associated with nephron deficiency may promote hypertrophy of the proximal tubule and so increased reabsorption of sodium, and thus a rightward shift in the pressure natriuresis relationship. Normalization of sodium balance can then only occur at the expense of chronically increased arterial pressure. Therefore, alterations/adaptations in tubules and glomeruli in response to nephron deficiency may increase the risk of hypertension and renal disease in the long-term.


Assuntos
Adaptação Fisiológica , Néfrons/fisiologia , Animais , Retroalimentação Fisiológica , Taxa de Filtração Glomerular , Humanos , Hipertensão/etiologia , Rim/crescimento & desenvolvimento , Nefropatias/etiologia , Glomérulos Renais/fisiologia , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/fisiologia
15.
3 Biotech ; 13(6): 177, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188294

RESUMO

Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03599-8.

16.
Am J Physiol Regul Integr Comp Physiol ; 302(7): R868-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22319047

RESUMO

We have previously shown that fetal uninephrectomy (uni-x) at 100 days of gestation (term = 150 days) in male sheep results in a 30% nephron deficit, reduction in glomerular filtration rate (GFR) and renal blood flow, and elevation in arterial pressure at 6 mo of age. Furthermore, in response to an acute 0.9% saline load, sodium excretion was significantly delayed in uni-x animals leading us to speculate that tubuloglomerular feedback (TGF) activity was reset in uni-x animals. In the present study, we induced TGF blockade by furosemide administration (1.5 mg/kg iv over 90 min) and determined GFR, effective renal plasma flow, and urine and sodium excretion responses in 6-mo-old male sheep. In response to furosemide, a significant diuresis and natriuresis was observed in the sham group; however, the response was significantly delayed and reduced in uni-x animals (both, P(treatment×time) < 0.001). Cummulative urinary and sodium output was significantly less in the uni-x compared with the sham sheep (both, P(treatment×time) < 0.001). GFR was increased in the sham but not the uni-x sheep (P(treatment×time) < 0.0001). In conclusion, the excretory response to furosemide was attenuated in the uni-x sheep, and this suggests a rightward resetting of the TGF operating point. The TGF mechanism is important in the fine tuning of sodium homeostasis and is likely a contributing factor for the dysfunction in sodium regulation we have previously observed in the uni-x animals.


Assuntos
Diuréticos/farmacologia , Feto/cirurgia , Furosemida/farmacologia , Rim/efeitos dos fármacos , Nefrectomia , Animais , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/irrigação sanguínea , Masculino , Natriurese/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Ovinos , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/urina
17.
Clin Exp Pharmacol Physiol ; 39(11): 979-89, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22971052

RESUMO

1.Glucocorticoids (GCs) are necessary for fetal development, but clinical and experimental studies suggest that excess exposure may be detrimental to health in both the short and longer term. 2.Exposure of the fetus to synthetic GCs can occur if the mother has a medical condition requiring GC therapy (e.g. asthma) or if she threatens to deliver her baby prematurely. Synthetic GCs can readily cross the placenta and treatment is beneficial, at least in the short term, for maternal health and fetal survival. 3.Maternal stress during pregnancy can raise endogenous levels of the natural GC cortisol. A significant proportion of the cortisol is inactivated by the placental 'GC barrier'. However, exposure to severe stress during pregnancy can result in increased risk of miscarriage, low birth weight and behavioural deficits in children. 4.Animal studies have shown that excess exposure to both synthetic and natural GCs can alter normal organ development, including that of the heart, brain and kidney. The nature and severity of the organ impairment is dependent upon the timing of exposure and, in some cases, the type of GC used and the sex of the fetus. 5.In animal models, exposure to elevated GCs during pregnancy has been associated with adult-onset diseases, including elevated blood pressure, impaired cardiac and vascular function and altered metabolic function.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Feminino , Humanos , Recém-Nascido , Gravidez , Tempo
18.
Hypertension ; 79(1): 261-270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739764

RESUMO

Majority of patients with hypertension and chronic kidney disease (CKD) undergoing renal denervation (RDN) are maintained on antihypertensive medication. However, RDN may impair compensatory responses to hypotension induced by blood loss. Therefore, continuation of antihypertensive medications in denervated patients may exacerbate hypotensive episodes. This study examined whether antihypertensive medication compromised hemodynamic responses to blood loss in normotensive (control) sheep and in sheep with hypertensive CKD at 30 months after RDN (control-RDN, CKD-RDN) or sham (control-intact, CKD-intact) procedure. CKD-RDN sheep had lower basal blood pressure (BP; ≈9 mm Hg) and higher basal renal blood flow (≈38%) than CKD-intact. Candesartan lowered BP and increased renal blood flow in all groups. 10% loss of blood volume alone caused a modest fall in BP (≈6-8 mm Hg) in all groups but did not affect the recovery of BP. 10% loss of blood volume in the presence of candesartan prolonged the time at trough BP by 9 minutes and attenuated the fall in renal blood flow in the CKD-RDN group compared with CKD-intact. Candesartan in combination with RDN prolonged trough BP and attenuated renal hemodynamic responses to blood loss. To minimize the risk of hypotension-mediated organ damage, patients with RDN maintained on antihypertensive medications may require closer monitoring when undergoing surgery or experiencing traumatic blood loss.


Assuntos
Antagonistas de Receptores de Angiotensina/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hemorragia/fisiopatologia , Rim/inervação , Simpatectomia/métodos , Tetrazóis/administração & dosagem , Antagonistas de Receptores de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Hemodinâmica/fisiologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Ovinos
20.
Am J Physiol Renal Physiol ; 301(6): F1168-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21921022

RESUMO

Fetal uninephrectomy (uni-x) in male sheep at 100 days of gestation (term = 150 days) reduces overall nephron endowment without affecting birth weight. Offspring have a lower glomerular filtration rate (GFR) and elevated mean arterial pressure (MAP) at 6 mo of age. This study investigated whether this reduction in renal function was associated with impaired urine-concentrating ability at 6 mo of age and exacerbated with ageing (4 yr) and examined response to 1) nonpressor dose of exogenous arginine vasopressin (AVP; 0.2 µg·kg(-1)·h(-1) iv) and 2) 30 h of water deprivation. Basal MAP was higher in uni-x animals at both ages, and became further elevated with age compared with the sham group (elevation in MAP with age; sham: ~4 mmHg, uni-x: 9 mmHg, P(group × age) < 0.01). GFR declined with ageing in both groups with the decrease being greater with age in the uni-x group (further 26%, P(group × age) < 0.001). In response to AVP infusion, urine osmolality increased in both treatment groups; this response was significantly lower in the uni-x animals and became further reduced with ageing. Uni-x animals had reduced renal expression of vasopressin-2 receptor and aquaporin-2 at both ages (P < 0.01). The increase in plasma AVP levels in response to dehydration was similar between the treatment groups, suggesting the urine-concentrating defect was associated with these renal gene changes rather than defects in AVP secretion. Renal insufficiency due to a low-nephron endowment increases the risk of hypertension and chronic renal disease and may incur greater vulnerability to physiological challenges such as water deprivation as observed in the uni-x animals.


Assuntos
Capacidade de Concentração Renal/fisiologia , Néfrons/fisiologia , Fatores Etários , Animais , Antidiuréticos/farmacologia , Aquaporina 2/biossíntese , Arginina Vasopressina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Desidratação/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Masculino , Nefrectomia , Néfrons/efeitos dos fármacos , Receptores de Vasopressinas/biossíntese , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA